Conjugates of ubiquitin cross-reactive protein distribute in a cytoskeletal pattern (original) (raw)

Abstract

Ubiquitin cross-reactive protein (UCRP), a 15-kDa interferon-induced protein, is a sequence homolog of ubiquitin that is covalently ligated to intracellular proteins in a parallel enzymatic reaction and is found at low levels within cultured cell lines and human tissues not exposed to interferon. Ubiquitin and UCRP ligation reactions apparently target distinct subsets of intracellular proteins, as judged from differences in the distributions of the respective adducts revealed on immunoblots. In this study, successive passages of the human lung carcinoma line A549 in the presence of neutralizing antibodies against alpha and beta interferons had no effect on the levels of either free or conjugated UCRP, indicating that these UCRP pools are constitutively present within uninduced cells and are thus not a consequence of autoinduction by low levels of secreted alpha/beta interferon. In an effort to identify potential targets for UCRP conjugation, the immunocytochemical distribution of UCRP was examined by using affinity-purified polyclonal antibodies against recombinant polypeptide. UCRP distributes in a punctate cytoskeletal pattern that is resistant to extraction by nonionic detergents (e.g., Triton X-100) in both uninduced and interferon-treated A549 cells. The cytoskeletal pattern colocalizes with the intermediate filament network of epithelial and mesothelial cell lines. Immunoblots of parallel Triton X-100-insoluble cell extracts suggest that the cytoskeletal association largely results from the noncovalent association of UCRP conjugates with the intermediate filaments rather than direct ligation of the polypeptide to structural components of the filaments. A significant increase in the sequestration of UCRP adducts on intermediate filaments accompanies interferon induction. These results suggest that UCRP may serve as a trans-acting binding factor directing the association of ligated target proteins to intermediate filaments.

8408

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fairley J. A., Scott G. A., Jensen K. D., Goldsmith L. A., Diaz L. A. Characterization of keratocalmin, a calmodulin-binding protein from human epidermis. J Clin Invest. 1991 Jul;88(1):315–322. doi: 10.1172/JCI115294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Farrell P. J., Broeze R. J., Lengyel P. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature. 1979 Jun 7;279(5713):523–525. doi: 10.1038/279523a0. [DOI] [PubMed] [Google Scholar]
  3. Fried V. A., Smith H. T. Ubiquitin: a multifunctional regulatory protein associated with the cytoskeleton. Prog Clin Biol Res. 1989;317:733–744. [PubMed] [Google Scholar]
  4. Gown A. M., Vogel A. M. Monoclonal antibodies to intermediate filament proteins of human cells: unique and cross-reacting antibodies. J Cell Biol. 1982 Nov;95(2 Pt 1):414–424. doi: 10.1083/jcb.95.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haas A. L., Ahrens P., Bright P. M., Ankel H. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem. 1987 Aug 15;262(23):11315–11323. [PubMed] [Google Scholar]
  6. Haas A. L., Bright P. M. The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J Biol Chem. 1985 Oct 15;260(23):12464–12473. [PubMed] [Google Scholar]
  7. Hershko A., Ciechanover A., Heller H., Haas A. L., Rose I. A. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1783–1786. doi: 10.1073/pnas.77.4.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807. doi: 10.1146/annurev.bi.61.070192.003553. [DOI] [PubMed] [Google Scholar]
  9. Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horisberger M. A. Interferon-induced human protein MxA is a GTPase which binds transiently to cellular proteins. J Virol. 1992 Aug;66(8):4705–4709. doi: 10.1128/jvi.66.8.4705-4709.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson G. D., Davidson R. S., McNamee K. C., Russell G., Goodwin D., Holborow E. J. Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy. J Immunol Methods. 1982 Dec 17;55(2):231–242. doi: 10.1016/0022-1759(82)90035-7. [DOI] [PubMed] [Google Scholar]
  12. Jonnalagadda S., Butt T. R., Marsh J., Sternberg E. J., Mirabelli C. K., Ecker D. J., Crooke S. T. Expression and accurate processing of yeast penta-ubiquitin in Escherichia coli. J Biol Chem. 1987 Dec 25;262(36):17750–17756. [PubMed] [Google Scholar]
  13. Knight E., Jr, Fahey D., Cordova B., Hillman M., Kutny R., Reich N., Blomstrom D. A 15-kDa interferon-induced protein is derived by COOH-terminal processing of a 17-kDa precursor. J Biol Chem. 1988 Apr 5;263(10):4520–4522. [PubMed] [Google Scholar]
  14. Korant B. D., Blomstrom D. C., Jonak G. J., Knight E., Jr Interferon-induced proteins. Purification and characterization of a 15,000-dalton protein from human and bovine cells induced by interferon. J Biol Chem. 1984 Dec 10;259(23):14835–14839. [PubMed] [Google Scholar]
  15. Koromilas A. E., Roy S., Barber G. N., Katze M. G., Sonenberg N. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science. 1992 Sep 18;257(5077):1685–1689. doi: 10.1126/science.1382315. [DOI] [PubMed] [Google Scholar]
  16. Lawson D. Epinemin: a new protein associated with vimentin filaments in non-neural cells. J Cell Biol. 1983 Dec;97(6):1891–1905. doi: 10.1083/jcb.97.6.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Loeb K. R., Haas A. L. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem. 1992 Apr 15;267(11):7806–7813. [PubMed] [Google Scholar]
  18. Manetto V., Perry G., Tabaton M., Mulvihill P., Fried V. A., Smith H. T., Gambetti P., Autilio-Gambetti L. Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4501–4505. doi: 10.1073/pnas.85.12.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matthes T., Wolff A., Soubiran P., Gros F., Dighiero G. Antitubulin antibodies. II. Natural autoantibodies and induced antibodies recognize different epitopes on the tubulin molecule. J Immunol. 1988 Nov 1;141(9):3135–3141. [PubMed] [Google Scholar]
  20. Mayer R. J., Arnold J., László L., Landon M., Lowe J. Ubiquitin in health and disease. Biochim Biophys Acta. 1991 Jun 13;1089(2):141–157. doi: 10.1016/0167-4781(91)90002-4. [DOI] [PubMed] [Google Scholar]
  21. Mori H., Kondo J., Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer's disease. Science. 1987 Mar 27;235(4796):1641–1644. doi: 10.1126/science.3029875. [DOI] [PubMed] [Google Scholar]
  22. Murayama S., Mori H., Ihara Y., Bouldin T. W., Suzuki K., Tomonaga M. Immunocytochemical and ultrastructural studies of lower motor neurons in amyotrophic lateral sclerosis. Ann Neurol. 1990 Feb;27(2):137–148. doi: 10.1002/ana.410270208. [DOI] [PubMed] [Google Scholar]
  23. Murayama S., Ookawa Y., Mori H., Nakano I., Ihara Y., Kuzuhara S., Tomonaga M. Immunocytochemical and ultrastructural study of Lewy body-like hyaline inclusions in familial amyotrophic lateral sclerosis. Acta Neuropathol. 1989;78(2):143–152. doi: 10.1007/BF00688202. [DOI] [PubMed] [Google Scholar]
  24. Murti K. G., Goorha R., Klymkowsky M. W. A functional role for intermediate filaments in the formation of frog virus 3 assembly sites. Virology. 1988 Jan;162(1):264–269. doi: 10.1016/0042-6822(88)90420-5. [DOI] [PubMed] [Google Scholar]
  25. Murti K. G., Smith H. T., Fried V. A. Ubiquitin is a component of the microtubule network. Proc Natl Acad Sci U S A. 1988 May;85(9):3019–3023. doi: 10.1073/pnas.85.9.3019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ohta M., Marceau N., Perry G., Manetto V., Gambetti P., Autilio-Gambetti L., Metuzals J., Kawahara H., Cadrin M., French S. W. Ubiquitin is present on the cytokeratin intermediate filaments and Mallory bodies of hepatocytes. Lab Invest. 1988 Dec;59(6):848–856. [PubMed] [Google Scholar]
  27. Ozkaynak E., Finley D., Solomon M. J., Varshavsky A. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 1987 May;6(5):1429–1439. doi: 10.1002/j.1460-2075.1987.tb02384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reich N., Evans B., Levy D., Fahey D., Knight E., Jr, Darnell J. E., Jr Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6394–6398. doi: 10.1073/pnas.84.18.6394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Riley D. A., Bain J. L., Ellis S., Haas A. L. Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles. J Histochem Cytochem. 1988 Jun;36(6):621–632. doi: 10.1177/36.6.2835410. [DOI] [PubMed] [Google Scholar]
  30. Schlesinger D. H., Goldstein G., Niall H. D. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry. 1975 May 20;14(10):2214–2218. doi: 10.1021/bi00681a026. [DOI] [PubMed] [Google Scholar]
  31. Sen G. C., Lengyel P. The interferon system. A bird's eye view of its biochemistry. J Biol Chem. 1992 Mar 15;267(8):5017–5020. [PubMed] [Google Scholar]
  32. Shoeman R. L., Höner B., Stoller T. J., Kesselmeier C., Miedel M. C., Traub P., Graves M. C. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6336–6340. doi: 10.1073/pnas.87.16.6336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Singh B., Arlinghaus R. B. Vimentin phosphorylation by p37mos protein kinase in vitro and generation of a 50-kDa cleavage product in v-mos-transformed cells. Virology. 1989 Nov;173(1):144–156. doi: 10.1016/0042-6822(89)90230-4. [DOI] [PubMed] [Google Scholar]
  34. Small J. V., Zobeley S., Rinnerthaler G., Faulstich H. Coumarin-phalloidin: a new actin probe permitting triple immunofluorescence microscopy of the cytoskeleton. J Cell Sci. 1988 Jan;89(Pt 1):21–24. doi: 10.1242/jcs.89.1.21. [DOI] [PubMed] [Google Scholar]
  35. Tölle H. G., Weber K., Osborn M. Microinjection of monoclonal antibodies to vimentin, desmin, and GFA in cells which contain more than one IF type. Exp Cell Res. 1986 Feb;162(2):462–474. doi: 10.1016/0014-4827(86)90350-2. [DOI] [PubMed] [Google Scholar]
  36. Varshavsky A. The N-end rule. Cell. 1992 May 29;69(5):725–735. doi: 10.1016/0092-8674(92)90285-k. [DOI] [PubMed] [Google Scholar]
  37. Vijay-Kumar S., Bugg C. E., Cook W. J. Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol. 1987 Apr 5;194(3):531–544. doi: 10.1016/0022-2836(87)90679-6. [DOI] [PubMed] [Google Scholar]
  38. Wang E., Cairncross J. G., Yung W. K., Garber E. A., Liem R. K. An intermediate filament-associated protein, p50, recognized by monoclonal antibodies. J Cell Biol. 1983 Nov;97(5 Pt 1):1507–1514. doi: 10.1083/jcb.97.5.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wilkinson K. D., Audhya T. K. Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly. J Biol Chem. 1981 Sep 10;256(17):9235–9241. [PubMed] [Google Scholar]
  40. Yamaguchi H., Nakazato Y., Kawarabayashi T., Ishiguro K., Ihara Y., Morimatsu M., Hirai S. Extracellular neurofibrillary tangles associated with degenerating neurites and neuropil threads in Alzheimer-type dementia. Acta Neuropathol. 1991;81(6):603–609. doi: 10.1007/BF00296369. [DOI] [PubMed] [Google Scholar]
  41. von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]