Modified nucleosides of Bacillus subtilis transfer ribonucleic acids (original) (raw)

Abstract

An analysis of the kinds and amounts of minor nucleosides of transfer ribonucleic acids (tRNA's) from Bacillus subtilis 168 trpC2 is presented. Identification and quantitation were accomplished using ion exclusion chromatography, thin-layer and paper chromatography, and ultraviolet absorption properties. Nucleosides and their amount in moles per 80 residues are as follows: guanosine (25.7), cytidine (22.0), adenosine (15.2), uridine (13.1), 5-methyluridine (0.98), pseudouridine (1.54), 1-methyladenosine (0.15), N6-methyladenosine (0.01), 7-methyladenosine (0.10), 2-methyladenosine (0.03), 7-methylguanosine (0.20), N2-methylguanosine (0.14), 1-methylguanosine (0.14), a methylated pyrimidine (0.17), a methylated derivative of N6-(delta 2-isopentenyl)adenosine (0.02), ribose methylated nucleosides (0.02), 4-thiouridine (0.12), 2-thio-5-(N-methylaminomethyl) (0.09), and an unknown thionucleoside (0.12). Although the composition is similar to that of Escherichia coli in the proportion of major nucleosides, the content of pseudouridine and 5-methyluridine, and the degree of base and ribose methylation, the composition is more similar to that of the tRNA's of yeast and higher organisms in its lower degree of thiolation, the presence of significant amounts of 1-methyladenosine, and the low levels of 2-methyladenosine and 6-methyladenosine. Therefore, the nucleoside composition of B. subtilis presents some different aspects from those usually given as characteristic for bacterial tRNA's. It is not known whether these differences are due to variation between bacterial species in general or related to the process of differentiation.

258

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Koh H., Söll D. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys. 1973 Jan;154(1):277–282. doi: 10.1016/0003-9861(73)90058-1. [DOI] [PubMed] [Google Scholar]
  2. Arnold H. H., Schmidt W., Kersten H. Occurrence and biosynthesis of ribothymidine in tRNAs of B. subtilis. FEBS Lett. 1975 Mar 15;52(1):62–65. doi: 10.1016/0014-5793(75)80638-7. [DOI] [PubMed] [Google Scholar]
  3. Arnold H., Kersten H. The occurrence of ribothymidine, 1-methyladenosine, methylated guanosines and the corresponding methyltransferases in E. coli and Bacillus subtilis. FEBS Lett. 1973 Oct 1;36(1):34–38. doi: 10.1016/0014-5793(73)80331-x. [DOI] [PubMed] [Google Scholar]
  4. CANTONI G. L., GELBOIN H. V., LUBORSKY S. W., RICHARDS H. H., SINGER M. F. Studies on soluble ribonucleic acid of rabbit liver. II. Preparation and properties of rabbit-liver soluble RNA. Biochim Biophys Acta. 1962 Sep 17;61:354–367. doi: 10.1016/0926-6550(62)90136-6. [DOI] [PubMed] [Google Scholar]
  5. Carbon J. A., Hung L., Jones D. S. A reversible oxidative in activation of specific transfer RNA species. Proc Natl Acad Sci U S A. 1965 May;53(5):979–986. doi: 10.1073/pnas.53.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carbon J., David H. Studies on the thionucleotides in transfer ribonucleic acid. Addition of N-ethylmaleimide and formation of mixed disulfides with thiol compounds. Biochemistry. 1968 Nov;7(11):3851–3858. doi: 10.1021/bi00851a010. [DOI] [PubMed] [Google Scholar]
  7. Cerutti P., Holt J. W., Miller N. Detection and determination of 5,6-dihydrouridine and 4-thiouridine in transfer ribonucleic acid from different sources. J Mol Biol. 1968 Jun 28;34(3):505–518. doi: 10.1016/0022-2836(68)90176-9. [DOI] [PubMed] [Google Scholar]
  8. Delk A. S., Rabinowitz J. C. Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine. Proc Natl Acad Sci U S A. 1975 Feb;72(2):528–530. doi: 10.1073/pnas.72.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goehler B., Doi R. H. Presence and function of sulur-containing transfer ribonucleic acid of Bacillus subtilis. J Bacteriol. 1968 Mar;95(3):793–800. doi: 10.1128/jb.95.3.793-800.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keisel N., Vold B. Undermethylated transfer ribonucleic acid from a relaxed strain of Bacillus subtilis: construction of the strain and analysis of the transfer ribonucleic acid. J Bacteriol. 1976 Apr;126(1):294–299. doi: 10.1128/jb.126.1.294-299.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim S. H., Sussman J. L., Suddath F. L., Quigley G. J., McPherson A., Wang A. H., Seeman N. C., RICH A. The general structure of transfer RNA molecules. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4970–4974. doi: 10.1073/pnas.71.12.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lazzarini R. A. Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtillis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):185–190. doi: 10.1073/pnas.56.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lipsett M. N. Disulfide bonds in sRNA. Cold Spring Harb Symp Quant Biol. 1966;31:449–455. doi: 10.1101/sqb.1966.031.01.057. [DOI] [PubMed] [Google Scholar]
  14. Lipsett M. N., Doctor B. P. Studies on tyrosine transfer ribonucleic acid, a sulfur-rich species from Escherichia coli. J Biol Chem. 1967 Sep 25;242(18):4072–4077. [PubMed] [Google Scholar]
  15. Macon J. B., Wolfenden R. 1-Methyladenosine. Dimroth rearrangement and reversible reduction. Biochemistry. 1968 Oct;7(10):3453–3458. doi: 10.1021/bi00850a021. [DOI] [PubMed] [Google Scholar]
  16. Miura K. Specificity in the structure of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1967;6:39–82. doi: 10.1016/s0079-6603(08)60524-3. [DOI] [PubMed] [Google Scholar]
  17. Munns T. W., Sims H. F. Methylation and processing of transfer ribonucleic acid in mammalian and bacterial cells. J Biol Chem. 1975 Mar 25;250(6):2143–2149. [PubMed] [Google Scholar]
  18. Randerath E., Chia L. L., Morris H. P., Randerath K. Base analysis of RNA by 3H postlabeling--a study of ribothymidine content and degree of base methylation of 4 S RNA. Biochim Biophys Acta. 1974 Oct 11;366(2):159–167. doi: 10.1016/0005-2787(74)90330-x. [DOI] [PubMed] [Google Scholar]
  19. Romeo J. M., Delk A. S., Rabinowitz J. C. The occurrence of a transmethylation reaction not involving S-adenosylmethionine in the formation of ribothymidine in Bacillus subtilis transfer-RNA. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1256–1261. doi: 10.1016/s0006-291x(74)80419-5. [DOI] [PubMed] [Google Scholar]
  20. Singhal R. P., Cohn W. E. Cation-exclusion chromatography on anion exchangers: application to nucleic acid components and comparison with anion-exchange chromatography. Biochemistry. 1973 Apr 10;12(8):1532–1537. doi: 10.1021/bi00732a010. [DOI] [PubMed] [Google Scholar]
  21. Singhal R. P. Ion-exlusion chromatography: analysis and isolation of nucleic acid components, and influence of separation parameters. Arch Biochem Biophys. 1972 Oct;152(2):800–810. doi: 10.1016/0003-9861(72)90276-7. [DOI] [PubMed] [Google Scholar]
  22. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Svensson I., Patel V. J. A rapid assay technique for RNA ribose methylases. Nucleic Acids Res. 1975 Apr;2(4):603–611. doi: 10.1093/nar/2.4.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vold B. S., Clinton G. M., Spizizen J. An effect of temperature on the Bacillus subtillis transfer RNA's which respond to codons beginning with U and A correlation with cytokinin activity. Biochim Biophys Acta. 1970;209(2):396–404. doi: 10.1016/0005-2787(70)90737-9. [DOI] [PubMed] [Google Scholar]
  25. Vold B. S. Preparation of tRNA's and aminoacyl-tRNA synthetases from Bacillus subtilis cells at various stages of growth and spores. Methods Enzymol. 1974;29:502–510. doi: 10.1016/0076-6879(74)29045-1. [DOI] [PubMed] [Google Scholar]
  26. Wong T. W., Weiss S. B., Eliceiri G. L., Bryant J. Ribonucleic acid sulfurtransferase from Bacillus subtilis W168. Sulfuration with beta-mercaptopyruvate and properties of the enzyme system. Biochemistry. 1970 May 26;9(11):2376–2386. doi: 10.1021/bi00813a024. [DOI] [PubMed] [Google Scholar]