Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces (original) (raw)

Abstract

1. The purpose of the study was to examine the dependence of neuromuscular propagation impairment on the level of isometric force sustained to the endurance limit. The task involved human volunteers sustaining a submaximal abduction force with the index finger by activating the first dorsal interosseous muscle as long as possible. 2. The submaximal force was sustained at one of three levels (20, 35 or 65% of maximum) by increasing motor unit activity, as indicated by the electromyogram (EMG), during the fatiguing contraction. Although the EMG increased during the fatiguing contraction, the EMG was significantly less than maximum at the endurance limit for all subjects (deficit of 19-55% of maximum). This deficit was inversely related to the level of the sustained submaximal force. 3. The maximum voluntary contraction and twitch forces were significantly reduced following the fatiguing contraction. As with the EMG, the degree of force reduction was greatest for the subjects who sustained the low target forces. 4. The fatiguing contraction caused a 12-23% decline in M wave amplitude, a 33-51% increase in M wave duration, and no change in M wave area. The decline in M wave amplitude, which is an index of neuromuscular propagation impairment, was greatest among the subjects who sustained the low target forces. 5. The mean power frequency of the EMG decreased by a similar amount (50-57%) during the fatiguing contraction for all three groups of subjects. 6. A model representing the interaction of processes that enhance and impair force was developed to explain the recovery of twitch force following the sustained contractions at different target forces. 7. We conclude that the fatigue experienced by a subject when force is sustained at a submaximal value does involve an impairment of neuromuscular propagation. This impairment is one factor that limits muscle excitation during a submaximal, fatiguing contraction and contributes to the diminished force capability by the end of the fatigue task.

549

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreassen S., Arendt-Nielsen L. Muscle fibre conduction velocity in motor units of the human anterior tibial muscle: a new size principle parameter. J Physiol. 1987 Oct;391:561–571. doi: 10.1113/jphysiol.1987.sp016756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bellemare F., Garzaniti N. Failure of neuromuscular propagation during human maximal voluntary contraction. J Appl Physiol (1985) 1988 Mar;64(3):1084–1093. doi: 10.1152/jappl.1988.64.3.1084. [DOI] [PubMed] [Google Scholar]
  3. Bigland-Ritchie B. R., Dawson N. J., Johansson R. S., Lippold O. C. Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. J Physiol. 1986 Oct;379:451–459. doi: 10.1113/jphysiol.1986.sp016263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bigland-Ritchie B., Cafarelli E., Vøllestad N. K. Fatigue of submaximal static contractions. Acta Physiol Scand Suppl. 1986;556:137–148. [PubMed] [Google Scholar]
  5. Bigland-Ritchie B., Furbush F., Woods J. J. Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol (1985) 1986 Aug;61(2):421–429. doi: 10.1152/jappl.1986.61.2.421. [DOI] [PubMed] [Google Scholar]
  6. Bigland-Ritchie B., Kukulka C. G., Lippold O. C., Woods J. J. The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. J Physiol. 1982 Sep;330:265–278. doi: 10.1113/jphysiol.1982.sp014340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boyd D. C., Lawrence P. D., Bratty P. J. On modeling the single motor unit action potential. IEEE Trans Biomed Eng. 1978 May;25(3):236–243. doi: 10.1109/TBME.1978.326327. [DOI] [PubMed] [Google Scholar]
  8. Burke R. E., Levine D. N., Tsairis P., Zajac F. E., 3rd Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973 Nov;234(3):723–748. doi: 10.1113/jphysiol.1973.sp010369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Luca C. J. Myoelectrical manifestations of localized muscular fatigue in humans. Crit Rev Biomed Eng. 1984;11(4):251–279. [PubMed] [Google Scholar]
  10. Duchateau J., Hainaut K. Nonlinear summation of contractions in striated muscle. I. Twitch potentiation in human muscle. J Muscle Res Cell Motil. 1986 Feb;7(1):11–17. doi: 10.1007/BF01756197. [DOI] [PubMed] [Google Scholar]
  11. Edwards R. H., Hill D. K., Jones D. A., Merton P. A. Fatigue of long duration in human skeletal muscle after exercise. J Physiol. 1977 Nov;272(3):769–778. doi: 10.1113/jphysiol.1977.sp012072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Enoka R. M., Rankin L. L., Stuart D. G., Volz K. A. Fatigability of rat hindlimb muscle: associations between electromyogram and force during a fatigue test. J Physiol. 1989 Jan;408:251–270. doi: 10.1113/jphysiol.1989.sp017458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Enoka R. M., Stuart D. G. Neurobiology of muscle fatigue. J Appl Physiol (1985) 1992 May;72(5):1631–1648. doi: 10.1152/jappl.1992.72.5.1631. [DOI] [PubMed] [Google Scholar]
  14. Enoka R. M., Trayanova N., Laouris Y., Bevan L., Reinking R. M., Stuart D. G. Fatigue-related changes in motor unit action potentials of adult cats. Muscle Nerve. 1992 Feb;15(2):138–150. doi: 10.1002/mus.880150204. [DOI] [PubMed] [Google Scholar]
  15. Gardiner P. F., Olha A. E. Contractile and electromyographic characteristics of rat plantaris motor unit types during fatigue in situ. J Physiol. 1987 Apr;385:13–34. doi: 10.1113/jphysiol.1987.sp016481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gootzen T. H., Stegeman D. F., Van Oosterom A. Finite limb dimensions and finite muscle length in a model for the generation of electromyographic signals. Electroencephalogr Clin Neurophysiol. 1991 Apr;81(2):152–162. doi: 10.1016/0168-5597(91)90008-l. [DOI] [PubMed] [Google Scholar]
  17. Gordon D. A., Enoka R. M., Stuart D. G. Motor-unit force potentiation in adult cats during a standard fatigue test. J Physiol. 1990 Feb;421:569–582. doi: 10.1113/jphysiol.1990.sp017962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gordon D. A., Hamm T. M., Enoka R. M., Reinking R. M., Windhorst U., Stuart D. G. Measurement of axonal conduction velocity in single mammalian motor axons. J Neurosci Methods. 1987 Apr;19(4):267–284. doi: 10.1016/0165-0270(87)90070-7. [DOI] [PubMed] [Google Scholar]
  19. Grange R. W., Houston M. E. Simultaneous potentiation and fatigue in quadriceps after a 60-second maximal voluntary isometric contraction. J Appl Physiol (1985) 1991 Feb;70(2):726–731. doi: 10.1152/jappl.1991.70.2.726. [DOI] [PubMed] [Google Scholar]
  20. Houston M. E., Green H. J., Stull J. T. Myosin light chain phosphorylation and isometric twitch potentiation in intact human muscle. Pflugers Arch. 1985 Apr;403(4):348–352. doi: 10.1007/BF00589245. [DOI] [PubMed] [Google Scholar]
  21. Jami L., Murthy K. S., Petit J., Zytnicki D. After-effects of repetitive stimulation at low frequency on fast-contracting motor units of cat muscle. J Physiol. 1983 Jul;340:129–143. doi: 10.1113/jphysiol.1983.sp014754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kanda K., Hashizume K. Changes in properties of the medial gastrocnemius motor units in aging rats. J Neurophysiol. 1989 Apr;61(4):737–746. doi: 10.1152/jn.1989.61.4.737. [DOI] [PubMed] [Google Scholar]
  23. Kernell D., Donselaar Y., Eerbeek O. Effects of physiological amounts of high- and low-rate chronic stimulation on fast-twitch muscle of the cat hindlimb. II. Endurance-related properties. J Neurophysiol. 1987 Sep;58(3):614–627. doi: 10.1152/jn.1987.58.3.614. [DOI] [PubMed] [Google Scholar]
  24. Kernell D., Monster A. W. Motoneurone properties and motor fatigue. An intracellular study of gastrocnemius motoneurones of the cat. Exp Brain Res. 1982;46(2):197–204. doi: 10.1007/BF00237177. [DOI] [PubMed] [Google Scholar]
  25. Kugelberg E., Lindegren B. Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres. J Physiol. 1979 Mar;288:285–300. [PMC free article] [PubMed] [Google Scholar]
  26. Kukulka C. G., Moore M. A., Russell A. G. Changes in human alpha-motoneuron excitability during sustained maximum isometric contractions. Neurosci Lett. 1986 Aug 4;68(3):327–333. doi: 10.1016/0304-3940(86)90511-2. [DOI] [PubMed] [Google Scholar]
  27. Kukulka C. G., Russell A. G., Moore M. A. Electrical and mechanical changes in human soleus muscle during sustained maximum isometric contractions. Brain Res. 1986 Jan 1;362(1):47–54. doi: 10.1016/0006-8993(86)91397-1. [DOI] [PubMed] [Google Scholar]
  28. LUETTGAU H. C. THE EFFECT OF METABOLIC INHIBITORS ON THE FATIGUE OF THE ACTION POTENTIAL IN SINGLE MUSCLE FIBRES. J Physiol. 1965 May;178:45–67. doi: 10.1113/jphysiol.1965.sp007613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lind A. R., Petrofsky J. S. Amplitude of the surface electromyogram during fatiguing isometric contractions. Muscle Nerve. 1979 Jul-Aug;2(4):257–264. doi: 10.1002/mus.880020404. [DOI] [PubMed] [Google Scholar]
  30. Lindstrom L., Magnusson R., Petersén I. Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography. 1970 Nov-Dec;10(4):341–356. [PubMed] [Google Scholar]
  31. Lännergren J., Westerblad H. Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle. J Physiol. 1991 Mar;434:307–322. doi: 10.1113/jphysiol.1991.sp018471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. MERTON P. A. Voluntary strength and fatigue. J Physiol. 1954 Mar 29;123(3):553–564. doi: 10.1113/jphysiol.1954.sp005070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Macefield G., Hagbarth K. E., Gorman R., Gandevia S. C., Burke D. Decline in spindle support to alpha-motoneurones during sustained voluntary contractions. J Physiol. 1991;440:497–512. doi: 10.1113/jphysiol.1991.sp018721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Metzger J. M., Fitts R. H. Fatigue from high- and low-frequency muscle stimulation: contractile and biochemical alterations. J Appl Physiol (1985) 1987 May;62(5):2075–2082. doi: 10.1152/jappl.1987.62.5.2075. [DOI] [PubMed] [Google Scholar]
  35. Metzger J. M., Fitts R. H. Fatigue from high- and low-frequency muscle stimulation: role of sarcolemma action potentials. Exp Neurol. 1986 Aug;93(2):320–333. doi: 10.1016/0014-4886(86)90193-7. [DOI] [PubMed] [Google Scholar]
  36. Miller R. G., Giannini D., Milner-Brown H. S., Layzer R. B., Koretsky A. P., Hooper D., Weiner M. W. Effects of fatiguing exercise on high-energy phosphates, force, and EMG: evidence for three phases of recovery. Muscle Nerve. 1987 Nov-Dec;10(9):810–821. doi: 10.1002/mus.880100906. [DOI] [PubMed] [Google Scholar]
  37. Milner-Brown H. S., Miller R. G. Muscle membrane excitation and impulse propagation velocity are reduced during muscle fatigue. Muscle Nerve. 1986 May;9(4):367–374. doi: 10.1002/mus.880090415. [DOI] [PubMed] [Google Scholar]
  38. Petrofsky J. S., Glaser R. M., Phillips C. A., Lind A. R., Williams C. Evaluation of amplitude and frequency components of the surface EMG as an index of muscle fatigue. Ergonomics. 1982 Mar;25(3):213–223. doi: 10.1080/00140138208924942. [DOI] [PubMed] [Google Scholar]
  39. Rankin L. L., Enoka R. M., Volz K. A., Stuart D. G. Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle. J Appl Physiol (1985) 1988 Dec;65(6):2687–2695. doi: 10.1152/jappl.1988.65.6.2687. [DOI] [PubMed] [Google Scholar]
  40. Reinking R. M., Stephens J. A., Stuart D. G. The motor units of cat medial gastrocnemius: problem of their categorisation on the basis of mechanical properties. Exp Brain Res. 1975 Sep 29;23(3):301–313. doi: 10.1007/BF00239742. [DOI] [PubMed] [Google Scholar]
  41. Sahlin K., Ren J. M. Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J Appl Physiol (1985) 1989 Aug;67(2):648–654. doi: 10.1152/jappl.1989.67.2.648. [DOI] [PubMed] [Google Scholar]
  42. Sammeck R. Training-induced myelination in peripheral nerves of the rat. J Physiol. 1975 Jan;244(1):7P–7P. [PubMed] [Google Scholar]
  43. Sandercock T. G., Faulkner J. A., Albers J. W., Abbrecht P. H. Single motor unit and fiber action potentials during fatigue. J Appl Physiol (1985) 1985 Apr;58(4):1073–1079. doi: 10.1152/jappl.1985.58.4.1073. [DOI] [PubMed] [Google Scholar]
  44. Stephens J. A., Taylor A. Fatigue of maintained voluntary muscle contraction in man. J Physiol. 1972 Jan;220(1):1–18. doi: 10.1113/jphysiol.1972.sp009691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thomas C. K., Woods J. J., Bigland-Ritchie B. Impulse propagation and muscle activation in long maximal voluntary contractions. J Appl Physiol (1985) 1989 Nov;67(5):1835–1842. doi: 10.1152/jappl.1989.67.5.1835. [DOI] [PubMed] [Google Scholar]
  46. Vandervoort A. A., Quinlan J., McComas A. J. Twitch potentiation after voluntary contraction. Exp Neurol. 1983 Jul;81(1):141–152. doi: 10.1016/0014-4886(83)90163-2. [DOI] [PubMed] [Google Scholar]
  47. Zytnicki D., Lafleur J., Horcholle-Bossavit G., Lamy F., Jami L. Reduction of Ib autogenetic inhibition in motoneurons during contractions of an ankle extensor muscle in the cat. J Neurophysiol. 1990 Nov;64(5):1380–1389. doi: 10.1152/jn.1990.64.5.1380. [DOI] [PubMed] [Google Scholar]