Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis (original) (raw)

Abstract

Although several high-resolution X-ray crystallographic structures have been determined for Escherichia coli aspartate aminotransferase (eAATase), efforts to crystallize E. coli tyrosine aminotransferase (eTATase) have been unsuccessful. Sequence alignment analyses of eTATase and eAATase show 43% sequence identity and 72% sequence similarity, allowing for conservative substitutions. The high similarity of the two sequences indicates that both enzymes must have similar secondary and tertiary structures. Six active site residues of eAATase were targeted by homology modeling as being important for aromatic amino acid reactivity with eTATase. Two of these positions (Thr 109 and Asn 297) are invariant in all known aspartate aminotransferase enzymes, but differ in eTATase (Ser 109 and Ser 297). The other four positions (Val 39, Lys 41, Thr 47, and Asn 69) line the active site pocket of eAATase and are replaced by amino acids with more hydrophobic side chains in eTATase (Leu 39, Tyr 41, Ile 47, and Leu 69). These six positions in eAATase were mutated by site-directed mutagenesis to the corresponding amino acids found in eTATase in an attempt to redesign the substrate specificity of eAATase to that of eTATase. Five combinations of the individual mutations were obtained from mutagenesis reactions. The redesigned eAATase mutant containing all six mutations (Hex) displays second-order rate constants for the transamination of aspartate and phenylalanine that are within an order of magnitude of those observed for eTATase. Thus, the reactivity of eAATase with phenylalanine was increased by over three orders of magnitude without sacrificing the high transamination activity with aspartate observed for both enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahmsén L., Tom J., Burnier J., Butcher K. A., Kossiakoff A., Wells J. A. Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry. 1991 Apr 30;30(17):4151–4159. doi: 10.1021/bi00231a007. [DOI] [PubMed] [Google Scholar]
  2. Bryan P. N., Rollence M. L., Pantoliano M. W., Wood J., Finzel B. C., Gilliland G. L., Howard A. J., Poulos T. L. Proteases of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins. 1986 Dec;1(4):326–334. doi: 10.1002/prot.340010406. [DOI] [PubMed] [Google Scholar]
  3. Cronin C. N., Kirsch J. F. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis. Biochemistry. 1988 Jun 14;27(12):4572–4579. doi: 10.1021/bi00412a052. [DOI] [PubMed] [Google Scholar]
  4. Cunningham B. C., Wells J. A. Improvement in the alkaline stability of subtilisin using an efficient random mutagenesis and screening procedure. Protein Eng. 1987 Aug-Sep;1(4):319–325. doi: 10.1093/protein/1.4.319. [DOI] [PubMed] [Google Scholar]
  5. Danishefsky A. T., Onnufer J. J., Petsko G. A., Ringe D. Activity and structure of the active-site mutants R386Y and R386F of Escherichia coli aspartate aminotransferase. Biochemistry. 1991 Feb 19;30(7):1980–1985. doi: 10.1021/bi00221a035. [DOI] [PubMed] [Google Scholar]
  6. Dunn C. R., Wilks H. M., Halsall D. J., Atkinson T., Clarke A. R., Muirhead H., Holbrook J. J. Design and synthesis of new enzymes based on the lactate dehydrogenase framework. Philos Trans R Soc Lond B Biol Sci. 1991 May 29;332(1263):177–184. doi: 10.1098/rstb.1991.0047. [DOI] [PubMed] [Google Scholar]
  7. Estell D. A., Graycar T. P., Wells J. A. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem. 1985 Jun 10;260(11):6518–6521. [PubMed] [Google Scholar]
  8. Feeney R., Clarke A. R., Holbrook J. J. A single amino acid substitution in lactate dehydrogenase improves the catalytic efficiency with an alternative coenzyme. Biochem Biophys Res Commun. 1990 Jan 30;166(2):667–672. doi: 10.1016/0006-291x(90)90861-g. [DOI] [PubMed] [Google Scholar]
  9. Goldberg J. M., Swanson R. V., Goodman H. S., Kirsch J. F. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km. Biochemistry. 1991 Jan 8;30(1):305–312. doi: 10.1021/bi00215a041. [DOI] [PubMed] [Google Scholar]
  10. Goldberg J. M., Zheng J., Deng H., Chen Y. Q., Callender R., Kirsch J. F. Structure of the complex between pyridoxal 5'-phosphate and the tyrosine 225 to phenylalanine mutant of Escherichia coli aspartate aminotransferase determined by isotope-edited classical Raman difference spectroscopy. Biochemistry. 1993 Aug 17;32(32):8092–8097. doi: 10.1021/bi00083a006. [DOI] [PubMed] [Google Scholar]
  11. Hayashi H., Kuramitsu S., Inoue Y., Morino Y., Kagamiyama H. [Arg292----Val] or [Arg292----Leu] mutation enhances the reactivity of Escherichia coli aspartate aminotransferase with aromatic amino acids. Biochem Biophys Res Commun. 1989 Feb 28;159(1):337–342. doi: 10.1016/0006-291x(89)92443-1. [DOI] [PubMed] [Google Scholar]
  12. Hayashi H., Kuramitsu S., Kagamiyama H. Replacement of an interdomain residue Val39 of Escherichia coli aspartate aminotransferase affects the catalytic competence without altering the substrate specificity of the enzyme. J Biochem. 1991 May;109(5):699–704. doi: 10.1093/oxfordjournals.jbchem.a123443. [DOI] [PubMed] [Google Scholar]
  13. Hedstrom L., Perona J. J., Rutter W. J. Converting trypsin to chymotrypsin: residue 172 is a substrate specificity determinant. Biochemistry. 1994 Jul 26;33(29):8757–8763. doi: 10.1021/bi00195a017. [DOI] [PubMed] [Google Scholar]
  14. Hedstrom L., Szilagyi L., Rutter W. J. Converting trypsin to chymotrypsin: the role of surface loops. Science. 1992 Mar 6;255(5049):1249–1253. doi: 10.1126/science.1546324. [DOI] [PubMed] [Google Scholar]
  15. Henderson G. B., Murgolo N. J., Kuriyan J., Osapay K., Kominos D., Berry A., Scrutton N. S., Hinchliffe N. W., Perham R. N., Cerami A. Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8769–8773. doi: 10.1073/pnas.88.19.8769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hwang J. K., Warshel A. Why ion pair reversal by protein engineering is unlikely to succeed. Nature. 1988 Jul 21;334(6179):270–272. doi: 10.1038/334270a0. [DOI] [PubMed] [Google Scholar]
  17. Jackson D. Y., Burnier J., Quan C., Stanley M., Tom J., Wells J. A. A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science. 1994 Oct 14;266(5183):243–247. doi: 10.1126/science.7939659. [DOI] [PubMed] [Google Scholar]
  18. Jenkins W. T., D'Ari L. Glutamic-aspartic transaminase. IX. Equilibria with glutamate and alpha-ketoglutarate. J Biol Chem. 1966 Jun 25;241(12):2845–2854. [PubMed] [Google Scholar]
  19. Jäger J., Moser M., Sauder U., Jansonius J. N. Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. J Mol Biol. 1994 Jun 3;239(2):285–305. doi: 10.1006/jmbi.1994.1368. [DOI] [PubMed] [Google Scholar]
  20. Jäger J., Pauptit R. A., Sauder U., Jansonius J. N. Three-dimensional structure of a mutant E. coli aspartate aminotransferase with increased enzymic activity. Protein Eng. 1994 May;7(5):605–612. doi: 10.1093/protein/7.5.605. [DOI] [PubMed] [Google Scholar]
  21. Jäger J., Solmajer T., Jansonius J. N. Computational approach towards the three-dimensional structure of E. coli tyrosine aminotransferase. FEBS Lett. 1992 Jul 20;306(2-3):234–238. doi: 10.1016/0014-5793(92)81007-9. [DOI] [PubMed] [Google Scholar]
  22. Kirsch J. F., Eichele G., Ford G. C., Vincent M. G., Jansonius J. N., Gehring H., Christen P. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J Mol Biol. 1984 Apr 15;174(3):497–525. doi: 10.1016/0022-2836(84)90333-4. [DOI] [PubMed] [Google Scholar]
  23. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  24. Malashkevich V. N., Onuffer J. J., Kirsch J. F., Jansonius J. N. Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase. Nat Struct Biol. 1995 Jul;2(7):548–553. doi: 10.1038/nsb0795-548. [DOI] [PubMed] [Google Scholar]
  25. Mehta P. K., Hale T. I., Christen P. Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem. 1993 Jun 1;214(2):549–561. doi: 10.1111/j.1432-1033.1993.tb17953.x. [DOI] [PubMed] [Google Scholar]
  26. Mehta P. K., Hale T. I., Christen P. Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins. Eur J Biochem. 1989 Dec 8;186(1-2):249–253. doi: 10.1111/j.1432-1033.1989.tb15202.x. [DOI] [PubMed] [Google Scholar]
  27. Onuffer J. J., Kirsch J. F. Characterization of the apparent negative co-operativity induced in Escherichia coli aspartate aminotransferase by the replacement of Asp222 with alanine. Evidence for an extremely slow conformational change. Protein Eng. 1994 Mar;7(3):413–424. doi: 10.1093/protein/7.3.413. [DOI] [PubMed] [Google Scholar]
  28. Onuffer J. J., Ton B. T., Klement I., Kirsch J. F. The use of natural and unnatural amino acid substrates to define the substrate specificity differences of Escherichia coli aspartate and tyrosine aminotransferases. Protein Sci. 1995 Sep;4(9):1743–1749. doi: 10.1002/pro.5560040909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pantoliano M. W., Whitlow M., Wood J. F., Dodd S. W., Hardman K. D., Rollence M. L., Bryan P. N. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry. 1989 Sep 5;28(18):7205–7213. doi: 10.1021/bi00444a012. [DOI] [PubMed] [Google Scholar]
  30. Picot D., Sandmeier E., Thaller C., Vincent M. G., Christen P., Jansonius J. N. The open/closed conformational equilibrium of aspartate aminotransferase. Studies in the crystalline state and with a fluorescent probe in solution. Eur J Biochem. 1991 Mar 14;196(2):329–341. doi: 10.1111/j.1432-1033.1991.tb15821.x. [DOI] [PubMed] [Google Scholar]
  31. Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]
  32. Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
  33. Umbarger H. E. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533. [DOI] [PubMed] [Google Scholar]
  34. Wells J. A., Powers D. B., Bott R. R., Graycar T. P., Estell D. A. Designing substrate specificity by protein engineering of electrostatic interactions. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1219–1223. doi: 10.1073/pnas.84.5.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wilks H. M., Hart K. W., Feeney R., Dunn C. R., Muirhead H., Chia W. N., Barstow D. A., Atkinson T., Clarke A. R., Holbrook J. J. A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science. 1988 Dec 16;242(4885):1541–1544. doi: 10.1126/science.3201242. [DOI] [PubMed] [Google Scholar]