Characterization of a coronavirus: I. Structural proteins: Effects of preparative conditions on the migration of protein in polyacrylamide gels (original) (raw)

Abstract

Coronavirus A59 possesses four size classes of structural proteins which have apparent molecular weights measured by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of 23,000 (GP23), 50,000 (VP50), 90,000 (GP90), and 180,000 (GP180). VP50 is the only structural protein which is completely unaffected by protease treatment of intact virions. This species is the most highly labeled by polar amino acids such as glutamic acid and arginine and it is probably associated with the viral nucleocapsid. GP90, GP180, and GP23 are membrane-associated proteins. However, after protease treatment of virions, only 20% of the GP23 molecule is digested, whereas all of the GP90 and GP180 are removed. GP90 and GP180 appear to comprise most of the prominent layer of characteristic projections on the external surface of the viral envelope. The major portion of GP23 is presumed to lie within the lipid envelope, protected from protease digestion. GP23 and the protease resistant portion, p∗18, exhibit anomalous behavior on SDS-PAGE. After heating to 100° in SDS the electrophoretic mobility of these polypeptides is altered and several new forms of lower mobility are produced. β-Mercaptoethanol and dithiothreitol exaggerate the effects of heating.

Footnotes

A portion of this work was presented at the 74th Annual Meeting of the American Society for Microbiology (Abstracts, p. 219, 1974).

References

  1. Bingham R.W. The polypeptide composition of avian infectious bronchitis virus. Arch. Virol. 1975;49:207–216. doi: 10.1007/BF01317539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bragg P.D., Hou C. Organization of proteins in the native and reformed outer membrane of Escherichia coli. Biochim. Biophys. Acta. 1972;274:478–488. doi: 10.1016/0005-2736(72)90193-9. [DOI] [PubMed] [Google Scholar]
  3. Collins M.S., Alexander D.J., Harkness J.W. Heterogeneity of infectious bronchitis virus grown in eggs. Arch. Virol. 1976;50:55–72. doi: 10.1007/BF01318001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Diezel W., Kopperschläger G., Hofmann E. An improved procedure for protein staining in polyacrylamide gels with a new type of Coomassie brillant blue. Anal. Biochem. 1972;48:617–620. doi: 10.1016/0003-2697(72)90117-0. [DOI] [PubMed] [Google Scholar]
  5. Fairbanks G., Steck T.L., Wallach D.F.H. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971;10:2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  6. Furthmayr H., Marchesi V.T. Subunit structure of human erythrocyte glycophorin A. Biochemistry. 1976;15:1137–1144. doi: 10.1021/bi00650a028. [DOI] [PubMed] [Google Scholar]
  7. Garten W., Hindennach I., Henning U. The major proteins of the Escherichia coli outer cell envelope membrane. Characterization of proteins II∗ and III, comparison of all proteins. Eur. J. Biochem. 1975;59:215–221. doi: 10.1111/j.1432-1033.1975.tb02444.x. [DOI] [PubMed] [Google Scholar]
  8. Garwes D.J., Popcock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
  9. Gilson W., Gilson R., Rueckert R.R. An automatic high-precision acrylamide gel fractionator. Anal. Biochem. 1972;47:321–328. doi: 10.1016/0003-2697(72)90125-x. [DOI] [PubMed] [Google Scholar]
  10. Hierholzer J.C., Palmer E.L., Whitfield S.G., Kaye H.S., Dowdle W.R. Protein composition of coronavirus OC 43. Virology. 1972;48:516–527. doi: 10.1016/0042-6822(72)90062-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inouye M., Yee M. Homogeneity of envelope proteins of Escherichia coli separated by gel electrophoresis in sodium dodecyl sulfate. J. Bacteriol. 1973;113:304–312. doi: 10.1128/jb.113.1.304-312.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kiehn E.D., Holand J.J. Synthesis and cleavage of enterovirus polypeptides in mammalian cells. J. Virol. 1970;5:358–367. doi: 10.1128/jvi.5.3.358-367.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kondoh H., Hotani H. Flagellin from Escherichia coli K12: Polymerization and molecular weights in comparison with Salmonella flagellins. Biochim. Biophys. Acta. 1974;336:117–139. [Google Scholar]
  14. Koplow J., Goldfine H. Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli. J. Bacteriol. 1974;117:527–543. doi: 10.1128/jb.117.2.527-543.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lenard J., Compans R.W. The membrane structure of lipid-containing viruses. Biochim. Biophys. Acta. 1974;344:51–94. doi: 10.1016/0304-4157(74)90008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McIntosh K. Coronaviruses: A comprehensive review. In: Arber W., editor. Current Topics in Microbiology and Immunology. Springer-Verlag; New York: 1974. pp. 85–129. [Google Scholar]
  18. Maizel J.V., Jr . Polyacrylamide gel electrophoresis of viral proteins. In: Maramorosch K., Koprowski H., editors. Vol. V. Academic Press; New York: 1971. pp. 179–246. (Methods in Virology). [Google Scholar]
  19. Marton L.S.G., Garvin J.E. Subunit structure of the major human erythrocyte glycoprotein: Depolymerization by heating ghosts with sodium dodecyl sulfate. Biochem. Biophys. Res. Commun. 1973;52:1457–1462. doi: 10.1016/0006-291x(73)90664-5. [DOI] [PubMed] [Google Scholar]
  20. Reithmeier R.A.F., Bragg P.D. Purification and characterization of a heat-modifiable protein from the outer membrane of Escherichia coli. FEBS Lett. 1974;41:195–198. doi: 10.1016/0014-5793(74)81210-x. [DOI] [PubMed] [Google Scholar]
  21. Schnaitman C.A. Outer membrane proteins of Escherichia coli. I. Effects of preparative conditions on the migration of protein in polyacrylamide gels. Arch. Biochem. Biophys. 1973;157:541–552. doi: 10.1016/0003-9861(73)90673-5. [DOI] [PubMed] [Google Scholar]
  22. Schnaitman C.A. Outer membrane proteins of Escherichia coli. II. Heterogeneity of major outer membrane polypeptides. Arch. Biochem. Biophys. 1973;157:553–560. doi: 10.1016/0003-9861(73)90674-7. [DOI] [PubMed] [Google Scholar]
  23. Schnaitman C.A. Outer membrane proteins of Escherichia coli. III. Evidence that the major protein of Escherichia coli 0111 outer membrane consists of four distinct polypeptide species. J. Bacteriol. 1974;118:442–453. doi: 10.1128/jb.118.2.442-453.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Silverberg M., Furthmayr H., Marchesi V.T. The effect of carboxymethylating a single methionine residue on the subunit interactions of glycophorin A. Biochemistry. 1976;15:1448–1454. doi: 10.1021/bi00652a015. [DOI] [PubMed] [Google Scholar]
  25. Slutzky G.M., Ji T.H. The dissimilar nature of two forms of the major human erythrocyte membrane glycoprotein. Biochim. Biophys. Acta. 1974;373:337–346. doi: 10.1016/0005-2736(74)90013-3. [DOI] [PubMed] [Google Scholar]
  26. Sturman L.S., Takemoto K.K. Enhanced growth of a murine coronavirus in transformed mouse cells. Infection and Immunity. 1972;6:501–507. doi: 10.1128/iai.6.4.501-507.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sturman L.S., Holmes K.V. Characterization of a coronavirus. II. Glycoproteins of the viral envelope: Tryptic peptide analysis. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tuech J.K., Morrison M. Human erythrocyte membrane sialoglycoproteins: A study of interconversion. Biochem. Biophys. Res. Commun. 1974;59:352–360. doi: 10.1016/s0006-291x(74)80214-7. [DOI] [PubMed] [Google Scholar]
  29. Uemura J., Mizishima S. Isolation of outer membrane proteins of Escherichia coli and their characterization on polyacrylamide gel. Biochim. Biophys. Acta. 1975;413:163–171. doi: 10.1016/0005-2736(75)90101-7. [DOI] [PubMed] [Google Scholar]
  30. Weber K., Osborn M. Proteins and sodium dodecyl sulfate. Molecular weight determination on polyacrylamide gels and related procedures. In: Neurath H., Hill R., editors. The Proteins. 3rd ed. Academic Press; New York: 1975. pp. 179–223. [Google Scholar]