Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors (original) (raw)

Abstract

The mammalian form of the protozoan parasite Leishmania mexicana contains high activity of a cysteine proteinase (LmCPb) encoded on a tandem array of 19 genes (lmcpb). Homozygous null mutants for lmcpb have been produced by targeted gene disruption. All life-cycle stages of the mutant can be cultured in vitro, demonstrating that the gene is not essential for growth or differentiation of the parasite. However, the mutant exhibits a marked phenotype affecting virulence-- its infectivity to macrophages is reduced by 80%. The mutants are as efficient as wild-type parasites in invading macrophages but they only survive in a small proportion of the cells. However, those parasites that successfully infect these macrophages grow normally. Despite their reduced virulence, the mutants are still able to produce subcutaneous lesions in mice, albeit at a slower rate than wild-type parasites. The product of a single copy of lmcpb re-expressed in the null mutant was enzymatically active and restored infectivity toward macrophages to wild-type levels. Double null mutants created for lmcpb and lmcpa (another cathepsin L-like cysteine proteinase) have a similar phenotype to the lmcpb null mutant, showing that LmCPa does not compensate for the loss of LmCPb.

6008

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bart G., Coombs G. H., Mottram J. C. Isolation of lmcpc, a gene encoding a Leishmania mexicana cathepsin-B-like cysteine proteinase. Mol Biochem Parasitol. 1995 Jul;73(1-2):271–274. doi: 10.1016/0166-6851(95)00113-f. [DOI] [PubMed] [Google Scholar]
  2. Bates P. A., Robertson C. D., Tetley L., Coombs G. H. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology. 1992 Oct;105(Pt 2):193–202. doi: 10.1017/s0031182000074102. [DOI] [PubMed] [Google Scholar]
  3. Coombs G. H., Baxter J. Inhibition of Leishmania amastigote growth by antipain and leupeptin. Ann Trop Med Parasitol. 1984 Feb;78(1):21–24. doi: 10.1080/00034983.1984.11811768. [DOI] [PubMed] [Google Scholar]
  4. Coombs G. H., Hart D. T., Capaldo J. Proteinase inhibitors as antileishmanial agents. Trans R Soc Trop Med Hyg. 1982;76(5):660–663. doi: 10.1016/0035-9203(82)90236-x. [DOI] [PubMed] [Google Scholar]
  5. Cruz A. K., Titus R., Beverley S. M. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1599–1603. doi: 10.1073/pnas.90.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cruz A., Coburn C. M., Beverley S. M. Double targeted gene replacement for creating null mutants. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7170–7174. doi: 10.1073/pnas.88.16.7170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curotto de Lafaille M. A., Wirth D. F. Creation of Null/+ mutants of the alpha-tubulin gene in Leishmania enriettii by gene cluster deletion. J Biol Chem. 1992 Nov 25;267(33):23839–23846. [PubMed] [Google Scholar]
  8. Descoteaux A., Luo Y., Turco S. J., Beverley S. M. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science. 1995 Sep 29;269(5232):1869–1872. doi: 10.1126/science.7569927. [DOI] [PubMed] [Google Scholar]
  9. Eakin A. E., McGrath M. E., McKerrow J. H., Fletterick R. J., Craik C. S. Production of crystallizable cruzain, the major cysteine protease from Trypanosoma cruzi. J Biol Chem. 1993 Mar 25;268(9):6115–6118. [PubMed] [Google Scholar]
  10. Ilg T., Fuchs M., Gnau V., Wolfram M., Harbecke D., Overath P. Distribution of parasite cysteine proteinases in lesions of mice infected with Leishmania mexicana amastigotes. Mol Biochem Parasitol. 1994 Oct;67(2):193–203. doi: 10.1016/0166-6851(94)00126-x. [DOI] [PubMed] [Google Scholar]
  11. Ilg T., Stierhof Y. D., Etges R., Adrian M., Harbecke D., Overath P. Secreted acid phosphatase of Leishmania mexicana: a filamentous phosphoglycoprotein polymer. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8774–8778. doi: 10.1073/pnas.88.19.8774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Joshi P. B., Webb J. R., Davies J. E., McMaster W. R. The gene encoding streptothricin acetyltransferase (sat) as a selectable marker for Leishmania expression vectors. Gene. 1995 Apr 14;156(1):145–149. doi: 10.1016/0378-1119(95)00042-5. [DOI] [PubMed] [Google Scholar]
  13. Kelly J. M., Ward H. M., Miles M. A., Kendall G. A shuttle vector which facilitates the expression of transfected genes in Trypanosoma cruzi and Leishmania. Nucleic Acids Res. 1992 Aug 11;20(15):3963–3969. doi: 10.1093/nar/20.15.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lacalle R. A., Pulido D., Vara J., Zalacaín M., Jiménez A. Molecular analysis of the pac gene encoding a puromycin N-acetyl transferase from Streptomyces alboniger. Gene. 1989 Jul 15;79(2):375–380. doi: 10.1016/0378-1119(89)90220-5. [DOI] [PubMed] [Google Scholar]
  15. LeBowitz J. H., Coburn C. M., McMahon-Pratt D., Beverley S. M. Development of a stable Leishmania expression vector and application to the study of parasite surface antigen genes. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9736–9740. doi: 10.1073/pnas.87.24.9736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McGinty A., Moore M., Halton D. W., Walker B. Characterization of the cysteine proteinases of the common liver fluke Fasciola hepatica using novel, active-site directed affinity labels. Parasitology. 1993 Jun;106(Pt 5):487–493. doi: 10.1017/s0031182000076782. [DOI] [PubMed] [Google Scholar]
  17. McGrath M. E., Eakin A. E., Engel J. C., McKerrow J. H., Craik C. S., Fletterick R. J. The crystal structure of cruzain: a therapeutic target for Chagas' disease. J Mol Biol. 1995 Mar 24;247(2):251–259. doi: 10.1006/jmbi.1994.0137. [DOI] [PubMed] [Google Scholar]
  18. McKerrow J. H., McGrath M. E., Engel J. C. The cysteine protease of Trypanosoma cruzi as a model for antiparasite drug design. Parasitol Today. 1995 Aug;11(8):279–282. doi: 10.1016/0169-4758(95)80039-5. [DOI] [PubMed] [Google Scholar]
  19. McKerrow J. H., Sun E., Rosenthal P. J., Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol. 1993;47:821–853. doi: 10.1146/annurev.mi.47.100193.004133. [DOI] [PubMed] [Google Scholar]
  20. Mottram J. C., Kinnaird J. H., Shiels B. R., Tait A., Barry J. D. A novel CDC2-related protein kinase from Leishmania mexicana, LmmCRK1, is post-translationally regulated during the life cycle. J Biol Chem. 1993 Oct 5;268(28):21044–21052. [PubMed] [Google Scholar]
  21. Mottram J. C., Robertson C. D., Coombs G. H., Barry J. D. A developmentally regulated cysteine proteinase gene of Leishmania mexicana. Mol Microbiol. 1992 Jul;6(14):1925–1932. doi: 10.1111/j.1365-2958.1992.tb01365.x. [DOI] [PubMed] [Google Scholar]
  22. North M. J., Mottram J. C., Coombs G. H. Cysteine proteinases of parasitic protozoa. Parasitol Today. 1990 Aug;6(8):270–275. doi: 10.1016/0169-4758(90)90189-b. [DOI] [PubMed] [Google Scholar]
  23. Robertson C. D., Coombs G. H. Cathepsin B-like cysteine proteases of Leishmania mexicana. Mol Biochem Parasitol. 1993 Dec;62(2):271–279. doi: 10.1016/0166-6851(93)90116-f. [DOI] [PubMed] [Google Scholar]
  24. Robertson C. D., Coombs G. H. Multiple high activity cysteine proteases of Leishmania mexicana are encoded by the Imcpb gene array. Microbiology. 1994 Feb;140(Pt 2):417–424. doi: 10.1099/13500872-140-2-417. [DOI] [PubMed] [Google Scholar]
  25. Robertson C. D., Coombs G. H. Stage-specific proteinases of Leishmania mexicana mexicana promastigotes. FEMS Microbiol Lett. 1992 Jul 1;73(1-2):127–132. doi: 10.1111/j.1574-6968.1992.tb05301.x. [DOI] [PubMed] [Google Scholar]
  26. Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sacks D. L., Saraiva E. M., Rowton E., Turco S. J., Pimenta P. F. The role of the lipophosphoglycan of Leishmania in vector competence. Parasitology. 1994;108 (Suppl):S55–S62. doi: 10.1017/s0031182000075727. [DOI] [PubMed] [Google Scholar]
  28. Shankar A., Mitchen T. K., Hall L. R., Turco S. J., Titus R. G. Reversion to virulence in Leishmania major correlates with expression of surface lipophosphoglycan. Mol Biochem Parasitol. 1993 Oct;61(2):207–216. doi: 10.1016/0166-6851(93)90067-8. [DOI] [PubMed] [Google Scholar]
  29. Souza A. E., Bates P. A., Coombs G. H., Mottram J. C. Null mutants for the lmcpa cysteine proteinase gene in Leishmania mexicana. Mol Biochem Parasitol. 1994 Feb;63(2):213–220. doi: 10.1016/0166-6851(94)90057-4. [DOI] [PubMed] [Google Scholar]
  30. Souza A. E., Waugh S., Coombs G. H., Mottram J. C. Characterization of a multi-copy gene for a major stage-specific cysteine proteinase of Leishmania mexicana. FEBS Lett. 1992 Oct 19;311(2):124–127. doi: 10.1016/0014-5793(92)81382-v. [DOI] [PubMed] [Google Scholar]
  31. Titus R. G., Gueiros-Filho F. J., de Freitas L. A., Beverley S. M. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10267–10271. doi: 10.1073/pnas.92.22.10267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Webb J. R., McMaster W. R. Leishmania major HEXBP deletion mutants generated by double targeted gene replacement. Mol Biochem Parasitol. 1994 Feb;63(2):231–242. doi: 10.1016/0166-6851(94)90059-0. [DOI] [PubMed] [Google Scholar]
  33. Wiese M., Ilg T., Lottspeich F., Overath P. Ser/Thr-rich repetitive motifs as targets for phosphoglycan modifications in Leishmania mexicana secreted acid phosphatase. EMBO J. 1995 Mar 15;14(6):1067–1074. doi: 10.1002/j.1460-2075.1995.tb07089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wolfram M., Ilg T., Mottram J. C., Overath P. Antigen presentation by Leishmania mexicana-infected macrophages: activation of helper T cells specific for amastigote cysteine proteinases requires intracellular killing of the parasites. Eur J Immunol. 1995 Apr;25(4):1094–1100. doi: 10.1002/eji.1830250435. [DOI] [PubMed] [Google Scholar]