Identification of new polymorphisms of the angiotensin I-converting enzyme (ACE) gene, and study of their relationship to plasma ACE levels by two-QTL segregation-linkage analysis (original) (raw)

. 1996 Jun;58(6):1268–1278.

Abstract

Plasma angiotensin I-converting enzyme (ACE) levels are highly genetically determined. A previous segregation-linkage analysis suggested the existence of a functional mutation located within or close to the ACE locus, in almost complete linkage desequilibrium (LD) with the ACE insertion/deletion (I/D) polymorphism and accounting for half the ACE variance. In order to identify the functional variant at the molecular level, we compared ACE gene sequences between four subjects selected for having contrasted ACE levels and I/D genotypes. We identified 10 new polymorphisms, among which 8 were genotyped in 95 healthy nuclear families, in addition to the I/D polymorphism. These polymorphisms could be divided into two groups: five polymorphisms in the 5' region and three in the coding sequence and the 3' UTR. Within each group, polymorphisms were in nearly complete association, whereas polymorphisms from the two groups were in strong negative LD. After adjustment for the I/D polymorphism, all polymorphisms of the 5' group remained significantly associated with ACE levels, which suggests the existence of two quantitative trait loci (QTL) acting additively on ACE levels. Segregation-linkage analyses including one or two ACE-linked QTLs in LD with two ACE markers were performed to test this hypothesis. The two QTLs and the two markers were assumed to be in complete LD. Results supported the existence of two ACE-linked QTLs, which would explain 38% and 49% of the ACE variance in parents and offspring, respectively. One of these QTLs might be the I/D polymorphism itself or the newly characterized 4656(CT)2/3 polymorphism. The second QTL would have a frequency of approximately .20, which is incompatible with any of the yet-identified polymorphisms. More extensive sequencing and extended analyses in larger samples and in other populations will be necessary to characterize definitely the functional variants.

1268

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alhenc-Gelas F., Richard J., Courbon D., Warnet J. M., Corvol P. Distribution of plasma angiotensin I-converting enzyme levels in healthy men: relationship to environmental and hormonal parameters. J Lab Clin Med. 1991 Jan;117(1):33–39. [PubMed] [Google Scholar]
  2. Beneteau B., Baudin B., Morgant G., Giboudeau J., Baumann F. C. Automated kinetic assay of angiotensin-converting enzyme in serum. Clin Chem. 1986 May;32(5):884–886. [PubMed] [Google Scholar]
  3. Boerwinkle E., Chakraborty R., Sing C. F. The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann Hum Genet. 1986 May;50(Pt 2):181–194. doi: 10.1111/j.1469-1809.1986.tb01037.x. [DOI] [PubMed] [Google Scholar]
  4. Bonithon-Kopp C., Ducimetière P., Touboul P. J., Fève J. M., Billaud E., Courbon D., Héraud V. Plasma angiotensin-converting enzyme activity and carotid wall thickening. Circulation. 1994 Mar;89(3):952–954. doi: 10.1161/01.cir.89.3.952. [DOI] [PubMed] [Google Scholar]
  5. Bonney G. E., Lathrop G. M., Lalouel J. M. Combined linkage and segregation analysis using regressive models. Am J Hum Genet. 1988 Jul;43(1):29–37. [PMC free article] [PubMed] [Google Scholar]
  6. Bøhn M., Berge K. E., Bakken A., Erikssen J., Berg K. Insertion/deletion (I/D) polymorphism at the locus for angiotensin I-converting enzyme and myocardial infarction. Clin Genet. 1993 Dec;44(6):292–297. doi: 10.1111/j.1399-0004.1993.tb03903.x. [DOI] [PubMed] [Google Scholar]
  7. Cambien F., Alhenc-Gelas F., Herbeth B., Andre J. L., Rakotovao R., Gonzales M. F., Allegrini J., Bloch C. Familial resemblance of plasma angiotensin-converting enzyme level: the Nancy Study. Am J Hum Genet. 1988 Nov;43(5):774–780. [PMC free article] [PubMed] [Google Scholar]
  8. Cambien F., Costerousse O., Tiret L., Poirier O., Lecerf L., Gonzales M. F., Evans A., Arveiler D., Cambou J. P., Luc G. Plasma level and gene polymorphism of angiotensin-converting enzyme in relation to myocardial infarction. Circulation. 1994 Aug;90(2):669–676. doi: 10.1161/01.cir.90.2.669. [DOI] [PubMed] [Google Scholar]
  9. Cambien F., Poirier O., Lecerf L., Evans A., Cambou J. P., Arveiler D., Luc G., Bard J. M., Bara L., Ricard S. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature. 1992 Oct 15;359(6396):641–644. doi: 10.1038/359641a0. [DOI] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Cornell M. J., Williams T. A., Lamango N. S., Coates D., Corvol P., Soubrier F., Hoheisel J., Lehrach H., Isaac R. E. Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster. J Biol Chem. 1995 Jun 9;270(23):13613–13619. doi: 10.1074/jbc.270.23.13613. [DOI] [PubMed] [Google Scholar]
  12. Dizier M. H., Bonaïti-Pellié C., Clerget-Darpoux F. Conclusions of segregation analysis for family data generated under two-locus models. Am J Hum Genet. 1993 Dec;53(6):1338–1346. [PMC free article] [PubMed] [Google Scholar]
  13. Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
  14. Hubert C., Houot A. M., Corvol P., Soubrier F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem. 1991 Aug 15;266(23):15377–15383. [PubMed] [Google Scholar]
  15. Kreutz R., Hübner N., Ganten D., Lindpaintner K. Genetic linkage of the ACE gene to plasma angiotensin-converting enzyme activity but not to blood pressure. A quantitative trait locus confers identical complex phenotypes in human and rat hypertension. Circulation. 1995 Nov 1;92(9):2381–2384. doi: 10.1161/01.cir.92.9.2381. [DOI] [PubMed] [Google Scholar]
  16. Lattion A. L., Soubrier F., Allegrini J., Hubert C., Corvol P., Alhenc-Gelas F. The testicular transcript of the angiotensin I-converting enzyme encodes for the ancestral, non-duplicated form of the enzyme. FEBS Lett. 1989 Jul 31;252(1-2):99–104. doi: 10.1016/0014-5793(89)80897-x. [DOI] [PubMed] [Google Scholar]
  17. Lindpaintner K., Pfeffer M. A., Kreutz R., Stampfer M. J., Grodstein F., LaMotte F., Buring J., Hennekens C. H. A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med. 1995 Mar 16;332(11):706–711. doi: 10.1056/NEJM199503163321103. [DOI] [PubMed] [Google Scholar]
  18. McKenzie C. A., Julier C., Forrester T., McFarlane-Anderson N., Keavney B., Lathrop G. M., Ratcliffe P. J., Farrall M. Segregation and linkage analysis of serum angiotensin I-converting enzyme levels: evidence for two quantitative-trait loci. Am J Hum Genet. 1995 Dec;57(6):1426–1435. [PMC free article] [PubMed] [Google Scholar]
  19. Nadaud S., Houot A. M., Hubert C., Corvol P., Soubrier F. Functional study of the germinal angiotensin I-converting enzyme promoter. Biochem Biophys Res Commun. 1992 Nov 30;189(1):134–140. doi: 10.1016/0006-291x(92)91535-x. [DOI] [PubMed] [Google Scholar]
  20. Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990 Oct;86(4):1343–1346. doi: 10.1172/JCI114844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rigat B., Hubert C., Corvol P., Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 1992 Mar 25;20(6):1433–1433. doi: 10.1093/nar/20.6.1433-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  23. Schunkert H., Hense H. W., Holmer S. R., Stender M., Perz S., Keil U., Lorell B. H., Riegger G. A. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med. 1994 Jun 9;330(23):1634–1638. doi: 10.1056/NEJM199406093302302. [DOI] [PubMed] [Google Scholar]
  24. Sibony M., Gasc J. M., Soubrier F., Alhenc-Gelas F., Corvol P. Gene expression and tissue localization of the two isoforms of angiotensin I converting enzyme. Hypertension. 1993 Jun;21(6 Pt 1):827–835. doi: 10.1161/01.hyp.21.6.827. [DOI] [PubMed] [Google Scholar]
  25. Testut P., Soubrier F., Corvol P., Hubert C. Functional analysis of the human somatic angiotensin I-converting enzyme gene promoter. Biochem J. 1993 Aug 1;293(Pt 3):843–848. doi: 10.1042/bj2930843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thein S. L., Sampietro M., Rohde K., Rochette J., Weatherall D. J., Lathrop G. M., Demenais F. Detection of a major gene for heterocellular hereditary persistence of fetal hemoglobin after accounting for genetic modifiers. Am J Hum Genet. 1994 Feb;54(2):214–228. [PMC free article] [PubMed] [Google Scholar]
  27. Thompson E. A., Deeb S., Walker D., Motulsky A. G. The detection of linkage disequilibrium between closely linked markers: RFLPs at the AI-CIII apolipoprotein genes. Am J Hum Genet. 1988 Jan;42(1):113–124. [PMC free article] [PubMed] [Google Scholar]
  28. Tiret L., Amouyel P., Rakotovao R., Cambien F., Ducimetière P. Testing for association between disease and linked marker loci: a log-linear-model analysis. Am J Hum Genet. 1991 May;48(5):926–934. [PMC free article] [PubMed] [Google Scholar]
  29. Tiret L., Rigat B., Visvikis S., Breda C., Corvol P., Cambien F., Soubrier F. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet. 1992 Jul;51(1):197–205. [PMC free article] [PubMed] [Google Scholar]