Constraints on Allele Size at Microsatellite Loci: Implications for Genetic Differentiation (original) (raw)

Abstract

Microsatellites are promising genetic markers for studying the demographic structure and phylogenetic history of populations. We present theoretical arguments indicating that the usefulness of microsatellite data for these purposes may be limited to a short time perspective and to relatively small populations. The evolution of selectively neutral markers is governed by the interaction of mutation and random genetic drift. Mutation pressure has the inherent tendency to shift different populations to the same distribution of alleles. Hence, mutation pressure is a homogenizing force, and population divergence is caused by random genetic drift. In case of allozymes or sequence data, the diversifying effect of drift is typically orders of magnitude larger than the homogenizing effect of mutation pressure. By a simple model, we demonstrate that the situation may be different for microsatellites where mutation rates are high and the range of alleles is limited. With the help of computer simulations, we investigate to what extent genetic distance measures applied to microsatellite data can nevertheless yield useful estimators for phylogenetic relationships or demographic parameters. We show that predictions based on microsatellite data are quite reliable in small populations, but that already in moderately sized populations the danger of misinterpretation is substantial.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
  2. Edwards A., Hammond H. A., Jin L., Caskey C. T., Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992 Feb;12(2):241–253. doi: 10.1016/0888-7543(92)90371-x. [DOI] [PubMed] [Google Scholar]
  3. Ellegren H., Primmer C. R., Sheldon B. C. Microsatellite 'evolution': directionality or bias? Nat Genet. 1995 Dec;11(4):360–362. doi: 10.1038/ng1295-360. [DOI] [PubMed] [Google Scholar]
  4. Garza J. C., Slatkin M., Freimer N. B. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol. 1995 Jul;12(4):594–603. doi: 10.1093/oxfordjournals.molbev.a040239. [DOI] [PubMed] [Google Scholar]
  5. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463–471. doi: 10.1093/genetics/139.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. doi: 10.1038/332278a0. [DOI] [PubMed] [Google Scholar]
  7. Kelly R., Gibbs M., Collick A., Jeffreys A. J. Spontaneous mutation at the hypervariable mouse minisatellite locus Ms6-hm: flanking DNA sequence and analysis of germline and early somatic mutation events. Proc Biol Sci. 1991 Sep 23;245(1314):235–245. doi: 10.1098/rspb.1991.0115. [DOI] [PubMed] [Google Scholar]
  8. Kimura M., Ohta T. Distribution of allelic frequencies in a finite population under stepwise production of neutral alleles. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2761–2764. doi: 10.1073/pnas.72.7.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rubinsztein D. C., Amos W., Leggo J., Goodburn S., Jain S., Li S. H., Margolis R. L., Ross C. A., Ferguson-Smith M. A. Microsatellite evolution--evidence for directionality and variation in rate between species. Nat Genet. 1995 Jul;10(3):337–343. doi: 10.1038/ng0795-337. [DOI] [PubMed] [Google Scholar]
  10. Shriver M. D., Jin L., Chakraborty R., Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics. 1993 Jul;134(3):983–993. doi: 10.1093/genetics/134.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tautz D. Notes on the definition and nomenclature of tandemly repetitive DNA sequences. EXS. 1993;67:21–28. doi: 10.1007/978-3-0348-8583-6_2. [DOI] [PubMed] [Google Scholar]
  13. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  15. Zhivotovsky L. A., Feldman M. W. Microsatellite variability and genetic distances. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11549–11552. doi: 10.1073/pnas.92.25.11549. [DOI] [PMC free article] [PubMed] [Google Scholar]