Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death (original) (raw)

Abstract

Although cyclin-dependent kinase 5 (Cdk5) is closely related to other cyclin-dependent kinases, its kinase activity is detected only in the postmitotic neurons. Cdk5 expression and kinase activity are correlated with the extent of differentiation of neuronal cells in developing brain. Cdk5 purified from nervous tissue phosphorylates neuronal cytoskeletal proteins including neurofilament proteins and microtubule-associated protein tau in vitro. These findings indicate that Cdk5 may have unique functions in neuronal cells, especially in the regulation of phosphorylation of cytoskeletal molecules. We report here generation of Cdk5(-/-) mice through gene targeting and their phenotypic analysis. Cdk5(-/-) mice exhibit unique lesions in the central nervous system associated with perinatal mortality. The brains of Cdk5(-/-) mice lack cortical laminar structure and cerebellar foliation. In addition, the large neurons in the brain stem and in the spinal cord show chromatolytic changes with accumulation of neurofilament immunoreactivity. These findings indicate that Cdk5 is an important molecule for brain development and neuronal differentiation and also suggest that Cdk5 may play critical roles in neuronal cytoskeleton structure and organization.

11173

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bizzi A., Crane R. C., Autilio-Gambetti L., Gambetti P. Aluminum effect on slow axonal transport: a novel impairment of neurofilament transport. J Neurosci. 1984 Mar;4(3):722–731. doi: 10.1523/JNEUROSCI.04-03-00722.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carden M. J., Trojanowski J. Q., Schlaepfer W. W., Lee V. M. Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci. 1987 Nov;7(11):3489–3504. doi: 10.1523/JNEUROSCI.07-11-03489.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Draetta G. Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation. Trends Biochem Sci. 1990 Oct;15(10):378–383. doi: 10.1016/0968-0004(90)90235-4. [DOI] [PubMed] [Google Scholar]
  5. Glicksman M. A., Soppet D., Willard M. B. Posttranslational modification of neurofilament polypeptides in rabbit retina. J Neurobiol. 1987 Mar;18(2):167–196. doi: 10.1002/neu.480180205. [DOI] [PubMed] [Google Scholar]
  6. Goldman J. E., Yen S. H., Chiu F. C., Peress N. S. Lewy bodies of Parkinson's disease contain neurofilament antigens. Science. 1983 Sep 9;221(4615):1082–1084. doi: 10.1126/science.6308771. [DOI] [PubMed] [Google Scholar]
  7. Graham D. G., Szakál-Quin G., Priest J. W., Anthony D. C. In vitro evidence that covalent crosslinking of neurofilaments occurs in gamma-diketone neuropathy. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4979–4982. doi: 10.1073/pnas.81.15.4979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griffin J. W., Watson D. F. Axonal transport in neurological disease. Ann Neurol. 1988 Jan;23(1):3–13. doi: 10.1002/ana.410230103. [DOI] [PubMed] [Google Scholar]
  9. Hall F. L., Mitchell J. P., Vulliet P. R. Phosphorylation of synapsin I at a novel site by proline-directed protein kinase. J Biol Chem. 1990 Apr 25;265(12):6944–6948. [PubMed] [Google Scholar]
  10. Hasegawa M., Morishima-Kawashima M., Takio K., Suzuki M., Titani K., Ihara Y. Protein sequence and mass spectrometric analyses of tau in the Alzheimer's disease brain. J Biol Chem. 1992 Aug 25;267(24):17047–17054. [PubMed] [Google Scholar]
  11. Hellmich M. R., Pant H. C., Wada E., Battey J. F. Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10867–10871. doi: 10.1073/pnas.89.22.10867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirano A., Donnenfeld H., Sasaki S., Nakano I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1984 Sep;43(5):461–470. doi: 10.1097/00005072-198409000-00001. [DOI] [PubMed] [Google Scholar]
  13. Hisanaga S., Ishiguro K., Uchida T., Okumura E., Okano T., Kishimoto T. Tau protein kinase II has a similar characteristic to cdc2 kinase for phosphorylating neurofilament proteins. J Biol Chem. 1993 Jul 15;268(20):15056–15060. [PubMed] [Google Scholar]
  14. Jones S. M., Williams R. C., Jr Phosphate content of mammalian neurofilaments. J Biol Chem. 1982 Sep 10;257(17):9902–9905. [PubMed] [Google Scholar]
  15. Julien J. P., Mushynski W. E. Multiple phosphorylation sites in mammalian neurofilament polypeptides. J Biol Chem. 1982 Sep 10;257(17):10467–10470. [PubMed] [Google Scholar]
  16. Kulkarni A. B., Huh C. G., Becker D., Geiser A., Lyght M., Flanders K. C., Roberts A. B., Sporn M. B., Ward J. M., Karlsson S. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):770–774. doi: 10.1073/pnas.90.2.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee V. M., Otvos L., Jr, Carden M. J., Hollosi M., Dietzschold B., Lazzarini R. A. Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1998–2002. doi: 10.1073/pnas.85.6.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lew J., Huang Q. Q., Qi Z., Winkfein R. J., Aebersold R., Hunt T., Wang J. H. A brain-specific activator of cyclin-dependent kinase 5. Nature. 1994 Sep 29;371(6496):423–426. doi: 10.1038/371423a0. [DOI] [PubMed] [Google Scholar]
  19. Lew J., Winkfein R. J., Paudel H. K., Wang J. H. Brain proline-directed protein kinase is a neurofilament kinase which displays high sequence homology to p34cdc2. J Biol Chem. 1992 Dec 25;267(36):25922–25926. [PubMed] [Google Scholar]
  20. Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f. [DOI] [PubMed] [Google Scholar]
  21. Love P. E., Tremblay M. L., Westphal H. Targeting of the T-cell receptor zeta-chain gene in embryonic stem cells: strategies for generating multiple mutations in a single gene. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9929–9933. doi: 10.1073/pnas.89.20.9929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McBurney M. W., Sutherland L. C., Adra C. N., Leclair B., Rudnicki M. A., Jardine K. The mouse Pgk-1 gene promoter contains an upstream activator sequence. Nucleic Acids Res. 1991 Oct 25;19(20):5755–5761. doi: 10.1093/nar/19.20.5755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meyerson M., Enders G. H., Wu C. L., Su L. K., Gorka C., Nelson C., Harlow E., Tsai L. H. A family of human cdc2-related protein kinases. EMBO J. 1992 Aug;11(8):2909–2917. doi: 10.1002/j.1460-2075.1992.tb05360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miyasaka H., Okabe S., Ishiguro K., Uchida T., Hirokawa N. Interaction of the tail domain of high molecular weight subunits of neurofilaments with the COOH-terminal region of tubulin and its regulation by tau protein kinase II. J Biol Chem. 1993 Oct 25;268(30):22695–22702. [PubMed] [Google Scholar]
  25. Nikolic M., Dudek H., Kwon Y. T., Ramos Y. F., Tsai L. H. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 1996 Apr 1;10(7):816–825. doi: 10.1101/gad.10.7.816. [DOI] [PubMed] [Google Scholar]
  26. Nixon R. A., Lewis S. E., Marotta C. A. Posttranslational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neurons. J Neurosci. 1987 Apr;7(4):1145–1158. doi: 10.1523/JNEUROSCI.07-04-01145.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nixon R. A., Paskevich P. A., Sihag R. K., Thayer C. Y. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol. 1994 Aug;126(4):1031–1046. doi: 10.1083/jcb.126.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nixon R. A., Sihag R. K. Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci. 1991 Nov;14(11):501–506. doi: 10.1016/0166-2236(91)90062-y. [DOI] [PubMed] [Google Scholar]
  29. Ohshima T., Kozak C. A., Nagle J. W., Pant H. C., Brady R. O., Kulkarni A. B. Molecular cloning and chromosomal mapping of the mouse gene encoding cyclin-dependent kinase 5 regulatory subunit p35. Genomics. 1996 Jul 15;35(2):372–375. doi: 10.1006/geno.1996.0370. [DOI] [PubMed] [Google Scholar]
  30. Ohshima T., Nagle J. W., Pant H. C., Joshi J. B., Kozak C. A., Brady R. O., Kulkarni A. B. Molecular cloning and chromosomal mapping of the mouse cyclin-dependent kinase 5 gene. Genomics. 1995 Aug 10;28(3):585–588. doi: 10.1006/geno.1995.1194. [DOI] [PubMed] [Google Scholar]
  31. Paudel H. K., Lew J., Ali Z., Wang J. H. Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer's paired helical filaments. J Biol Chem. 1993 Nov 5;268(31):23512–23518. [PubMed] [Google Scholar]
  32. STEELE J. C., RICHARDSON J. C., OLSZEWSKI J. PROGRESSIVE SUPRANUCLEAR PALSY. A HETEROGENEOUS DEGENERATION INVOLVING THE BRAIN STEM, BASAL GANGLIA AND CEREBELLUM WITH VERTICAL GAZE AND PSEUDOBULBAR PALSY, NUCHAL DYSTONIA AND DEMENTIA. Arch Neurol. 1964 Apr;10:333–359. doi: 10.1001/archneur.1964.00460160003001. [DOI] [PubMed] [Google Scholar]
  33. Shetty K. T., Link W. T., Pant H. C. cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: isolation and characterization. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6844–6848. doi: 10.1073/pnas.90.14.6844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sternberger L. A., Sternberger N. H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6126–6130. doi: 10.1073/pnas.80.19.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Troncoso J. C., Hoffman P. N., Griffin J. W., Hess-Kozlow K. M., Price D. L. Aluminum intoxication: a disorder of neurofilament transport in motor neurons. Brain Res. 1985 Sep 2;342(1):172–175. doi: 10.1016/0006-8993(85)91369-1. [DOI] [PubMed] [Google Scholar]
  36. Tsai L. H., Delalle I., Caviness V. S., Jr, Chae T., Harlow E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature. 1994 Sep 29;371(6496):419–423. doi: 10.1038/371419a0. [DOI] [PubMed] [Google Scholar]
  37. Tsai L. H., Takahashi T., Caviness V. S., Jr, Harlow E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development. 1993 Dec;119(4):1029–1040. doi: 10.1242/dev.119.4.1029. [DOI] [PubMed] [Google Scholar]
  38. Tybulewicz V. L., Crawford C. E., Jackson P. K., Bronson R. T., Mulligan R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell. 1991 Jun 28;65(7):1153–1163. doi: 10.1016/0092-8674(91)90011-m. [DOI] [PubMed] [Google Scholar]
  39. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  40. Xu Z. S., Liu W. S., Willard M. B. Identification of six phosphorylation sites in the COOH-terminal tail region of the rat neurofilament protein M. J Biol Chem. 1992 Mar 5;267(7):4467–4471. [PubMed] [Google Scholar]