Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal CA3-CA1 cell pairs in vitro (original) (raw)

Abstract

The requirement for cooperative interactions between multiple synaptic inputs in the induction of long-term potentiation (LTP) and long-term depression (LTD) has been tested at Schaffer collateral synapses with paired recordings from monosynaptically coupled CA3-CA1 cell pairs in rat hippocampal slice cultures. Tetanization of single presynaptic neurons at 50 Hz (repeated 5-7 times for 300-500 ms each) induced only a transient potentiation (< 3 min) of excitatory postsynaptic potentials (EPSPs). Persistent potentiation (> 15 min) was induced only when single presynaptic action potentials were synchronously paired with directly induced postsynaptic depolarizing pulses (repeated 50-100 times). Tetanus-induced potentiation of extracellularly evoked EPSPs lasting > 4 min could only be obtained if the EPSP was > 4 mV. Because unitary EPSP amplitudes average approximately 1 mV, we conclude that high-frequency discharge must occur synchronously] in 4-5 CA3 cells for LTP to be induced in a common postsynaptic CA1 cell. Asynchronous pairing of presynaptic action potentials with postsynaptic depolarizing current pulses (preceding each EPSP by 800 ms) depressed both naive and previously potentiated unitary EPSPs. Likewise, homosynaptic LTD of unitary EPSPs was induced when the presynaptic cell was tetanized at 3 Hz for 3 min, regardless of their amplitude (0.3-3.2 mV). Homosynaptic LTD of extracellularly evoked Schaffer collateral EPSPs < 4 mV could be induced if no inhibitory postsynaptic potential was apparent, but was prevented by eliciting a large inhibitory postsynaptic potential or by injection of hyperpolarizing current in the postsynaptic cell. We conclude that cooperative interactions among multiple excitatory inputs are not required for induction of homosynaptic LTD of unitary EPSPs.

11225

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham W. C., Bear M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996 Apr;19(4):126–130. doi: 10.1016/s0166-2236(96)80018-x. [DOI] [PubMed] [Google Scholar]
  2. Barrionuevo G., Brown T. H. Associative long-term potentiation in hippocampal slices. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7347–7351. doi: 10.1073/pnas.80.23.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bear M. F. Mechanism for a sliding synaptic modification threshold. Neuron. 1995 Jul;15(1):1–4. doi: 10.1016/0896-6273(95)90056-x. [DOI] [PubMed] [Google Scholar]
  4. Bienenstock E. L., Cooper L. N., Munro P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982 Jan;2(1):32–48. doi: 10.1523/JNEUROSCI.02-01-00032.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
  6. Debanne D., Guérineau N. C., Gähwiler B. H., Thompson S. M. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol. 1996 Feb 15;491(Pt 1):163–176. doi: 10.1113/jphysiol.1996.sp021204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Debanne D., Guérineau N. C., Gähwiler B. H., Thompson S. M. Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. J Neurophysiol. 1995 Mar;73(3):1282–1294. doi: 10.1152/jn.1995.73.3.1282. [DOI] [PubMed] [Google Scholar]
  8. Debanne D., Gähwiler B. H., Thompson S. M. Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1148–1152. doi: 10.1073/pnas.91.3.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Debanne D., Thompson S. M. Associative long-term depression in the hippocampus in vitro. Hippocampus. 1996;6(1):9–16. doi: 10.1002/(SICI)1098-1063(1996)6:1<9::AID-HIPO3>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  10. Dudek S. M., Bear M. F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci. 1993 Jul;13(7):2910–2918. doi: 10.1523/JNEUROSCI.13-07-02910.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dudek S. M., Bear M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4363–4367. doi: 10.1073/pnas.89.10.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friedlander M. J., Sayer R. J., Redman S. J. Evaluation of long-term potentiation of small compound and unitary EPSPs at the hippocampal CA3-CA1 synapse. J Neurosci. 1990 Mar;10(3):814–825. doi: 10.1523/JNEUROSCI.10-03-00814.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goda Y., Stevens C. F. Long-term depression properties in a simple system. Neuron. 1996 Jan;16(1):103–111. doi: 10.1016/s0896-6273(00)80027-6. [DOI] [PubMed] [Google Scholar]
  14. Gähwiler B. H. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 1981 Dec;4(4):329–342. doi: 10.1016/0165-0270(81)90003-0. [DOI] [PubMed] [Google Scholar]
  15. Huerta P. T., Lisman J. E. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron. 1995 Nov;15(5):1053–1063. doi: 10.1016/0896-6273(95)90094-2. [DOI] [PubMed] [Google Scholar]
  16. Kerr D. S., Abraham W. C. Cooperative interactions among afferents govern the induction of homosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11637–11641. doi: 10.1073/pnas.92.25.11637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levy W. B., Steward O. Synapses as associative memory elements in the hippocampal formation. Brain Res. 1979 Oct 19;175(2):233–245. doi: 10.1016/0006-8993(79)91003-5. [DOI] [PubMed] [Google Scholar]
  18. Malinow R. Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP. Science. 1991 May 3;252(5006):722–724. doi: 10.1126/science.1850871. [DOI] [PubMed] [Google Scholar]
  19. McNaughton B. L., Douglas R. M., Goddard G. V. Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res. 1978 Nov 24;157(2):277–293. doi: 10.1016/0006-8993(78)90030-6. [DOI] [PubMed] [Google Scholar]
  20. Mulkey R. M., Malenka R. C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron. 1992 Nov;9(5):967–975. doi: 10.1016/0896-6273(92)90248-c. [DOI] [PubMed] [Google Scholar]
  21. Otto T., Eichenbaum H., Wiener S. I., Wible C. G. Learning-related patterns of CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal long-term potentiation. Hippocampus. 1991 Apr;1(2):181–192. doi: 10.1002/hipo.450010206. [DOI] [PubMed] [Google Scholar]
  22. Stevens C. F., Wang Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature. 1994 Oct 20;371(6499):704–707. doi: 10.1038/371704a0. [DOI] [PubMed] [Google Scholar]
  23. Tomasulo R. A., Ramirez J. J., Steward O. Synaptic inhibition regulates associative interactions between afferents during the induction of long-term potentiation and depression. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11578–11582. doi: 10.1073/pnas.90.24.11578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wagner J. J., Alger B. E. GABAergic and developmental influences on homosynaptic LTD and depotentiation in rat hippocampus. J Neurosci. 1995 Feb;15(2):1577–1586. doi: 10.1523/JNEUROSCI.15-02-01577.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]