Archaea and the prokaryote-to-eukaryote transition (original) (raw)

Abstract

Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.

Full Text

The Full Text of this article is available as a PDF (957.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alefounder P. R., Perham R. N. Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli. Mol Microbiol. 1989 Jun;3(6):723–732. doi: 10.1111/j.1365-2958.1989.tb00221.x. [DOI] [PubMed] [Google Scholar]
  2. Alifano P., Fani R., Liò P., Lazcano A., Bazzicalupo M., Carlomagno M. S., Bruni C. B. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev. 1996 Mar;60(1):44–69. doi: 10.1128/mr.60.1.44-69.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amiri K. A. Fibrillarin-like proteins occur in the domain Archaea. J Bacteriol. 1994 Apr;176(7):2124–2127. doi: 10.1128/jb.176.7.2124-2127.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arndt E. The genes for ribosomal protein L15 and the protein equivalent to secY in the archaebacterium Haloarcula (Halobacterium) marismortui. Biochim Biophys Acta. 1992 Feb 28;1130(1):113–116. doi: 10.1016/0167-4781(92)90474-e. [DOI] [PubMed] [Google Scholar]
  5. Auer J., Spicker G., Böck A. Organization and structure of the Methanococcus transcriptional unit homologous to the Escherichia coli "spectinomycin operon". Implications for the evolutionary relationship of 70 S and 80 S ribosomes. J Mol Biol. 1989 Sep 5;209(1):21–36. doi: 10.1016/0022-2836(89)90167-8. [DOI] [PubMed] [Google Scholar]
  6. Auer J., Spicker G., Böck A. Presence of a gene in the archaebacterium Methanococcus vannielii homologous to secY of eubacteria. Biochimie. 1991 Jun;73(6):683–688. doi: 10.1016/0300-9084(91)90048-6. [DOI] [PubMed] [Google Scholar]
  7. Avarsson A. Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation. J Mol Evol. 1995 Dec;41(6):1096–1104. [PubMed] [Google Scholar]
  8. Baier G., Piendl W., Redl B., Stöffler G. Structure, organization and evolution of the L1 equivalent ribosomal protein gene of the archaebacterium Methanococcus vannielii. Nucleic Acids Res. 1990 Feb 25;18(4):719–724. doi: 10.1093/nar/18.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Baldauf S. L., Palmer J. D., Doolittle W. F. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7749–7754. doi: 10.1073/pnas.93.15.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Barns S. M., Delwiche C. F., Palmer J. D., Pace N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9188–9193. doi: 10.1073/pnas.93.17.9188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1609–1613. doi: 10.1073/pnas.91.5.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Barra D., Schininà M. E., Bossa F., Puget K., Durosay P., Guissani A., Michelson A. M. A tetrameric iron superoxide dismutase from the eucaryote Tetrahymena pyriformis. J Biol Chem. 1990 Oct 15;265(29):17680–17687. [PubMed] [Google Scholar]
  13. Bartig D., Lemkemeier K., Frank J., Lottspeich F., Klink F. The archaebacterial hypusine-containing protein. Structural features suggest common ancestry with eukaryotic translation initiation factor 5A. Eur J Biochem. 1992 Mar 1;204(2):751–758. doi: 10.1111/j.1432-1033.1992.tb16690.x. [DOI] [PubMed] [Google Scholar]
  14. Bauer M. W., Bauer S. H., Kelly R. M. Purification and Characterization of a Proteasome from the Hyperthermophilic Archaeon Pyrococcus furiosus. Appl Environ Microbiol. 1997 Mar;63(3):1160–1164. doi: 10.1128/aem.63.3.1160-1164.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Baumann P., Jackson S. P. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6726–6730. doi: 10.1073/pnas.93.13.6726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bazan J. F., Weaver L. H., Roderick S. L., Huber R., Matthews B. W. Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2473–2477. doi: 10.1073/pnas.91.7.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Beck J. T., Zhao S., Wang C. C. Cloning, sequencing, and structural analysis of the DNA encoding inosine monophosphate dehydrogenase (EC 1.1.1.205) from Tritrichomonas foetus. Exp Parasitol. 1994 Feb;78(1):101–112. doi: 10.1006/expr.1994.1010. [DOI] [PubMed] [Google Scholar]
  18. Beckler G. S., Reeve J. N. Conservation of primary structure in the hisI gene of the archaebacterium, Methanococcus vannielii, the eubacterium Escherichia coli, and the eucaryote Saccharomyces cerevisiae. Mol Gen Genet. 1986 Jul;204(1):133–140. doi: 10.1007/BF00330200. [DOI] [PubMed] [Google Scholar]
  19. Belfort M., Reaban M. E., Coetzee T., Dalgaard J. Z. Prokaryotic introns and inteins: a panoply of form and function. J Bacteriol. 1995 Jul;177(14):3897–3903. doi: 10.1128/jb.177.14.3897-3903.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Belfort M., Weiner A. Another bridge between kingdoms: tRNA splicing in archaea and eukaryotes. Cell. 1997 Jun 27;89(7):1003–1006. doi: 10.1016/s0092-8674(00)80287-1. [DOI] [PubMed] [Google Scholar]
  21. Benachenhou-Lahfa N., Forterre P., Labedan B. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J Mol Evol. 1993 Apr;36(4):335–346. doi: 10.1007/BF00182181. [DOI] [PubMed] [Google Scholar]
  22. Benachenhou-Lahfa N., Labedan B., Forterre P. PCR-mediated cloning and sequencing of the gene encoding glutamate dehydrogenase from the archaeon Sulfolobus shibatae: identification of putative amino-acid signatures for extremophilic adaptation. Gene. 1994 Mar 11;140(1):17–24. doi: 10.1016/0378-1119(94)90725-0. [DOI] [PubMed] [Google Scholar]
  23. Bergerat A., Gadelle D., Forterre P. Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features. J Biol Chem. 1994 Nov 4;269(44):27663–27669. [PubMed] [Google Scholar]
  24. Beyer W., Imlay J., Fridovich I. Superoxide dismutases. Prog Nucleic Acid Res Mol Biol. 1991;40:221–253. doi: 10.1016/s0079-6603(08)60843-0. [DOI] [PubMed] [Google Scholar]
  25. Bianchi M. E. Prokaryotic HU and eukaryotic HMG1: a kinked relationship. Mol Microbiol. 1994 Oct;14(1):1–5. doi: 10.1111/j.1365-2958.1994.tb01261.x. [DOI] [PubMed] [Google Scholar]
  26. Bocchetta M., Ceccarelli E., Creti R., Sanangelantoni A. M., Tiboni O., Cammarano P. Arrangement and nucleotide sequence of the gene (fus) encoding elongation factor G (EF-G) from the hyperthermophilic bacterium Aquifex pyrophilus: phylogenetic depth of hyperthermophilic bacteria inferred from analysis of the EF-G/fus sequences. J Mol Evol. 1995 Dec;41(6):803–812. doi: 10.1007/BF00173160. [DOI] [PubMed] [Google Scholar]
  27. Bochar D. A., Brown J. R., Doolittle W. F., Klenk H. P., Lam W., Schenk M. E., Stauffacher C. V., Rodwell V. W. 3-hydroxy-3-methylglutaryl coenzyme A reductase of Sulfolobus solfataricus: DNA sequence, phylogeny, expression in Escherichia coli of the hmgA gene, and purification and kinetic characterization of the gene product. J Bacteriol. 1997 Jun;179(11):3632–3638. doi: 10.1128/jb.179.11.3632-3638.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bouthier de la Tour C., Portemer C., Huber R., Forterre P., Duguet M. Reverse gyrase in thermophilic eubacteria. J Bacteriol. 1991 Jun;173(12):3921–3923. doi: 10.1128/jb.173.12.3921-3923.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Bouthier de la Tour C., Portemer C., Nadal M., Stetter K. O., Forterre P., Duguet M. Reverse gyrase, a hallmark of the hyperthermophilic archaebacteria. J Bacteriol. 1990 Dec;172(12):6803–6808. doi: 10.1128/jb.172.12.6803-6808.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Brendel V., Brocchieri L., Sandler S. J., Clark A. J., Karlin S. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J Mol Evol. 1997 May;44(5):528–541. doi: 10.1007/pl00006177. [DOI] [PubMed] [Google Scholar]
  32. Breton R., Watson D., Yaguchi M., Lapointe J. Glutamyl-tRNA synthetases of Bacillus subtilis 168T and of Bacillus stearothermophilus. Cloning and sequencing of the gltX genes and comparison with other aminoacyl-tRNA synthetases. J Biol Chem. 1990 Oct 25;265(30):18248–18255. [PubMed] [Google Scholar]
  33. Brinkmann H., Martin W. Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. Plant Mol Biol. 1996 Jan;30(1):65–75. doi: 10.1007/BF00017803. [DOI] [PubMed] [Google Scholar]
  34. Brown J. R., Doolittle W. F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2441–2445. doi: 10.1073/pnas.92.7.2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Brown J. R., Masuchi Y., Robb F. T., Doolittle W. F. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol. 1994 Jun;38(6):566–576. doi: 10.1007/BF00175876. [DOI] [PubMed] [Google Scholar]
  36. Brown J. R., Robb F. T., Weiss R., Doolittle W. F. Evidence for the early divergence of tryptophanyl- and tyrosyl-tRNA synthetases. J Mol Evol. 1997 Jul;45(1):9–16. doi: 10.1007/pl00006206. [DOI] [PubMed] [Google Scholar]
  37. Brown J. W., Daniels C. J., Reeve J. N. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol. 1989;16(4):287–338. doi: 10.3109/10408418909105479. [DOI] [PubMed] [Google Scholar]
  38. Brown J. W., Reeve J. N. Polyadenylated, noncapped RNA from the archaebacterium Methanococcus vannielii. J Bacteriol. 1985 Jun;162(3):909–917. doi: 10.1128/jb.162.3.909-917.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Bröckl G., Berchtold M., Behr M., König H. Sequence of the 5-aminolevulinic acid dehydratase-encoding gene from the hyperthermophilic methanogen, Methanothermus sociabilis. Gene. 1992 Sep 21;119(1):151–152. doi: 10.1016/0378-1119(92)90084-3. [DOI] [PubMed] [Google Scholar]
  40. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  41. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol. 1992 Aug;15(3):352–356. doi: 10.1016/S0723-2020(11)80207-9. [DOI] [PubMed] [Google Scholar]
  42. Burnett M. E., Liu J., Conway T. Molecular characterization of the Zymomonas mobilis enolase (eno) gene. J Bacteriol. 1992 Oct;174(20):6548–6553. doi: 10.1128/jb.174.20.6548-6553.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Busby S., Ebright R. H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell. 1994 Dec 2;79(5):743–746. doi: 10.1016/0092-8674(94)90063-9. [DOI] [PubMed] [Google Scholar]
  44. Cammarano P., Palm P., Creti R., Ceccarelli E., Sanangelantoni A. M., Tiboni O. Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain. J Mol Evol. 1992 May;34(5):396–405. doi: 10.1007/BF00162996. [DOI] [PubMed] [Google Scholar]
  45. Carter C. W., Jr Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem. 1993;62:715–748. doi: 10.1146/annurev.bi.62.070193.003435. [DOI] [PubMed] [Google Scholar]
  46. Casiano C., Matheson A. T., Traut R. R. Occurrence in the archaebacterium Sulfolobus solfataricus of a ribosomal protein complex corresponding to Escherichia coli (L7/L12)4.L10 and eukaryotic (P1)2/(P2)2.P0. J Biol Chem. 1990 Nov 5;265(31):18757–18761. [PubMed] [Google Scholar]
  47. Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993 Dec;57(4):953–994. doi: 10.1128/mr.57.4.953-994.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Cavalier-Smith T. Origins of secondary metabolism. Ciba Found Symp. 1992;171:64–87. doi: 10.1002/9780470514344.ch5. [DOI] [PubMed] [Google Scholar]
  49. Cendrin F., Chroboczek J., Zaccai G., Eisenberg H., Mevarech M. Cloning, sequencing, and expression in Escherichia coli of the gene coding for malate dehydrogenase of the extremely halophilic archaebacterium Haloarcula marismortui. Biochemistry. 1993 Apr 27;32(16):4308–4313. doi: 10.1021/bi00067a020. [DOI] [PubMed] [Google Scholar]
  50. Charlebois R. L., Gaasterland T., Ragan M. A., Doolittle W. F., Sensen C. W. The Sulfolobus solfataricus P2 genome project. FEBS Lett. 1996 Jun 24;389(1):88–91. doi: 10.1016/0014-5793(96)00525-x. [DOI] [PubMed] [Google Scholar]
  51. Charlebois R. L., Schalkwyk L. C., Hofman J. D., Doolittle W. F. Detailed physical map and set of overlapping clones covering the genome of the archaebacterium Haloferax volcanii DS2. J Mol Biol. 1991 Dec 5;222(3):509–524. doi: 10.1016/0022-2836(91)90493-p. [DOI] [PubMed] [Google Scholar]
  52. Charlebois R. L., Sensen C. W., Doolittle W. F., Brown J. R. Evolutionary analysis of the hisCGABdFDEHI gene cluster from the archaeon Sulfolobus solfataricus P2. J Bacteriol. 1997 Jul;179(13):4429–4432. doi: 10.1128/jb.179.13.4429-4432.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Chen A., Kroon P. A., Poulter C. D. Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure. Protein Sci. 1994 Apr;3(4):600–607. doi: 10.1002/pro.5560030408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Chen A., Poulter C. D. Purification and characterization of farnesyl diphosphate/geranylgeranyl diphosphate synthase. A thermostable bifunctional enzyme from Methanobacterium thermoautotrophicum. J Biol Chem. 1993 May 25;268(15):11002–11007. [PubMed] [Google Scholar]
  55. Chiurazzi M., Meza R., Lara M., Lahm A., Defez R., Iaccarino M., Espín G. The Rhizobium leguminosarum biovar phaseoli glnT gene, encoding glutamine synthetase III. Gene. 1992 Sep 21;119(1):1–8. doi: 10.1016/0378-1119(92)90060-3. [DOI] [PubMed] [Google Scholar]
  56. Clark C. G., Roger A. J. Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6518–6521. doi: 10.1073/pnas.92.14.6518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Collart F. R., Osipiuk J., Trent J., Olsen G. J., Huberman E. Cloning, characterization and sequence comparison of the gene coding for IMP dehydrogenase from Pyrococcus furiosus. Gene. 1996 Oct 3;174(2):209–216. doi: 10.1016/0378-1119(96)00044-3. [DOI] [PubMed] [Google Scholar]
  58. Confalonieri F., Elie C., Nadal M., de La Tour C., Forterre P., Duguet M. Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4753–4757. doi: 10.1073/pnas.90.10.4753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Conover R. K., Doolittle W. F. Characterization of a gene involved in histidine biosynthesis in Halobacterium (Haloferax) volcanii: isolation and rapid mapping by transformation of an auxotroph with cosmid DNA. J Bacteriol. 1990 Jun;172(6):3244–3249. doi: 10.1128/jb.172.6.3244-3249.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25;16(22):10881–10890. doi: 10.1093/nar/16.22.10881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Crawford I. P. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu Rev Microbiol. 1989;43:567–600. doi: 10.1146/annurev.mi.43.100189.003031. [DOI] [PubMed] [Google Scholar]
  62. Creti R., Ceccarelli E., Bocchetta M., Sanangelantoni A. M., Tiboni O., Palm P., Cammarano P. Evolution of translational elongation factor (EF) sequences: reliability of global phylogenies inferred from EF-1 alpha(Tu) and EF-2(G) proteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3255–3259. doi: 10.1073/pnas.91.8.3255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Creti R., Citarella F., Tiboni O., Sanangelantoni A., Palm P., Cammarano P. Nucleotide sequence of a DNA region comprising the gene for elongation factor 1 alpha (EF-1 alpha) from the ultrathermophilic archaeote Pyrococcus woesei: phylogenetic implications. J Mol Evol. 1991 Oct;33(4):332–342. doi: 10.1007/BF02102864. [DOI] [PubMed] [Google Scholar]
  64. Cubellis M. V., Rozzo C., Nitti G., Arnone M. I., Marino G., Sannia G. Cloning and sequencing of the gene coding for aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem. 1989 Dec 8;186(1-2):375–381. doi: 10.1111/j.1432-1033.1989.tb15219.x. [DOI] [PubMed] [Google Scholar]
  65. Curnow A. W., Ibba M., Söll D. tRNA-dependent asparagine formation. Nature. 1996 Aug 15;382(6592):589–590. doi: 10.1038/382589b0. [DOI] [PubMed] [Google Scholar]
  66. Dahlmann B., Kopp F., Kuehn L., Niedel B., Pfeifer G., Hegerl R., Baumeister W. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 1989 Jul 17;251(1-2):125–131. doi: 10.1016/0014-5793(89)81441-3. [DOI] [PubMed] [Google Scholar]
  67. Danson M. J. Archaebacteria: the comparative enzymology of their central metabolic pathways. Adv Microb Physiol. 1988;29:165–231. doi: 10.1016/s0065-2911(08)60348-3. [DOI] [PubMed] [Google Scholar]
  68. Danson M. J. Central metabolism of the archaebacteria: an overview. Can J Microbiol. 1989 Jan;35(1):58–64. doi: 10.1139/m89-009. [DOI] [PubMed] [Google Scholar]
  69. Danson M. J., Eisenthal R., Hall S., Kessell S. R., Williams D. L. Dihydrolipoamide dehydrogenase from halophilic archaebacteria. Biochem J. 1984 Mar 15;218(3):811–818. doi: 10.1042/bj2180811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Darrow R. A., Knotts R. R. Two forms of glutamine synthetase in free-living root-nodule bacteria. Biochem Biophys Res Commun. 1977 Sep 23;78(2):554–559. doi: 10.1016/0006-291x(77)90214-5. [DOI] [PubMed] [Google Scholar]
  71. DeLong E. F. Archaea in coastal marine environments. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685–5689. doi: 10.1073/pnas.89.12.5685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. DeLong E. F., Wu K. Y., Prézelin B. B., Jovine R. V. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20;371(6499):695–697. doi: 10.1038/371695a0. [DOI] [PubMed] [Google Scholar]
  73. Delorme C., Ehrlich S. D., Renault P. Histidine biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol. 1992 Oct;174(20):6571–6579. doi: 10.1128/jb.174.20.6571-6579.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Delorme C., Godon J. J., Ehrlich S. D., Renault P. Gene inactivation in Lactococcus lactis: histidine biosynthesis. J Bacteriol. 1993 Jul;175(14):4391–4399. doi: 10.1128/jb.175.14.4391-4399.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Dennis P. P. Ancient ciphers: translation in Archaea. Cell. 1997 Jun 27;89(7):1007–1010. doi: 10.1016/s0092-8674(00)80288-3. [DOI] [PubMed] [Google Scholar]
  76. Doolittle R. F., Feng D. F., Anderson K. L., Alberro M. R. A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol. 1990 Nov;31(5):383–388. doi: 10.1007/BF02106053. [DOI] [PubMed] [Google Scholar]
  77. Doolittle W. F., Brown J. R. Tempo, mode, the progenote, and the universal root. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6721–6728. doi: 10.1073/pnas.91.15.6721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Drlica K. Bacterial topoisomerases and the control of DNA supercoiling. Trends Genet. 1990 Dec;6(12):433–437. doi: 10.1016/0168-9525(90)90306-q. [DOI] [PubMed] [Google Scholar]
  79. Durovic P., Dennis P. P. Separate pathways for excision and processing of 16S and 23S rRNA from the primary rRNA operon transcript from the hyperthermophilic archaebacterium Sulfolobus acidocaldarius: similarities to eukaryotic rRNA processing. Mol Microbiol. 1994 Jul;13(2):229–242. doi: 10.1111/j.1365-2958.1994.tb00418.x. [DOI] [PubMed] [Google Scholar]
  80. Dym O., Mevarech M., Sussman J. L. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science. 1995 Mar 3;267(5202):1344–1346. doi: 10.1126/science.267.5202.1344. [DOI] [PubMed] [Google Scholar]
  81. Ebbole D. J., Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem. 1987 Jun 15;262(17):8274–8287. [PubMed] [Google Scholar]
  82. Edgell D. R., Doolittle W. F. Archaea and the origin(s) of DNA replication proteins. Cell. 1997 Jun 27;89(7):995–998. doi: 10.1016/s0092-8674(00)80285-8. [DOI] [PubMed] [Google Scholar]
  83. Edmands J., Noridge N. A., Benson D. R. The actinorhizal root-nodule symbiont Frankia sp. strain CpI1 has two glutamine synthetases. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6126–6130. doi: 10.1073/pnas.84.17.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Eggen R. I., Geerling A. C., Boshoven A. B., de Vos W. M. Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli. J Bacteriol. 1991 Oct;173(20):6383–6389. doi: 10.1128/jb.173.20.6383-6389.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Eick D., Wedel A., Heumann H. From initiation to elongation: comparison of transcription by prokaryotic and eukaryotic RNA polymerases. Trends Genet. 1994 Aug;10(8):292–296. doi: 10.1016/0168-9525(90)90013-v. [DOI] [PubMed] [Google Scholar]
  86. Eisen J. A. The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol. 1995 Dec;41(6):1105–1123. doi: 10.1007/BF00173192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Elie C., Baucher M. F., Fondrat C., Forterre P. A protein related to eucaryal and bacterial DNA-motor proteins in the hyperthermophilic archaeon Sulfolobus acidocaldarius. J Mol Evol. 1997 Jul;45(1):107–114. doi: 10.1007/pl00006193. [DOI] [PubMed] [Google Scholar]
  88. Eriani G., Cavarelli J., Martin F., Ador L., Rees B., Thierry J. C., Gangloff J., Moras D. The class II aminoacyl-tRNA synthetases and their active site: evolutionary conservation of an ATP binding site. J Mol Evol. 1995 May;40(5):499–508. doi: 10.1007/BF00166618. [DOI] [PubMed] [Google Scholar]
  89. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  90. Erickson H. P. FtsZ, a prokaryotic homolog of tubulin? Cell. 1995 Feb 10;80(3):367–370. doi: 10.1016/0092-8674(95)90486-7. [DOI] [PubMed] [Google Scholar]
  91. Essar D. W., Eberly L., Hadero A., Crawford I. P. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol. 1990 Feb;172(2):884–900. doi: 10.1128/jb.172.2.884-900.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Fabry S., Hensel R. Primary structure of glyceraldehyde-3-phosphate dehydrogenase deduced from the nucleotide sequence of the thermophilic archaebacterium Methanothermus fervidus. Gene. 1988 Apr 29;64(2):189–197. doi: 10.1016/0378-1119(88)90334-4. [DOI] [PubMed] [Google Scholar]
  93. Fabry S., Heppner P., Dietmaier W., Hensel R. Cloning and sequencing the gene encoding 3-phosphoglycerate kinase from mesophilic Methanobacterium bryantii and thermophilic Methanothermus fervidus. Gene. 1990 Jul 2;91(1):19–25. doi: 10.1016/0378-1119(90)90157-m. [DOI] [PubMed] [Google Scholar]
  94. Fabry S., Lang J., Niermann T., Vingron M., Hensel R. Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from the mesophilic methanogenic archaebacteria Methanobacterium bryantii and Methanobacterium formicicum. Comparison with the respective gene structure of the closely related extreme thermophile Methanothermus fervidus. Eur J Biochem. 1989 Feb 1;179(2):405–413. doi: 10.1111/j.1432-1033.1989.tb14568.x. [DOI] [PubMed] [Google Scholar]
  95. Fani R., Liò P., Chiarelli I., Bazzicalupo M. The evolution of the histidine biosynthetic genes in prokaryotes: a common ancestor for the hisA and hisF genes. J Mol Evol. 1994 May;38(5):489–495. doi: 10.1007/BF00178849. [DOI] [PubMed] [Google Scholar]
  96. Fani R., Liò P., Lazcano A. Molecular evolution of the histidine biosynthetic pathway. J Mol Evol. 1995 Dec;41(6):760–774. doi: 10.1007/BF00173156. [DOI] [PubMed] [Google Scholar]
  97. Fitch W. M., Upper K. The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol. 1987;52:759–767. doi: 10.1101/sqb.1987.052.01.085. [DOI] [PubMed] [Google Scholar]
  98. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  99. Flores M. V., O'Sullivan W. J., Stewart T. S. Characterisation of the carbamoyl phosphate synthetase gene from Plasmodium falciparum. Mol Biochem Parasitol. 1994 Dec;68(2):315–318. doi: 10.1016/0166-6851(94)90176-7. [DOI] [PubMed] [Google Scholar]
  100. Forterre P., Benachenhou-Lahfa N., Confalonieri F., Duguet M., Elie C., Labedan B. The nature of the last universal ancestor and the root of the tree of life, still open questions. Biosystems. 1992;28(1-3):15–32. doi: 10.1016/0303-2647(92)90004-i. [DOI] [PubMed] [Google Scholar]
  101. Fox G. E., Magrum L. J., Balch W. E., Wolfe R. S., Woese C. R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4537–4541. doi: 10.1073/pnas.74.10.4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  103. Fuhrman J. A., McCallum K., Davis A. A. Novel major archaebacterial group from marine plankton. Nature. 1992 Mar 12;356(6365):148–149. doi: 10.1038/356148a0. [DOI] [PubMed] [Google Scholar]
  104. Germot A., Philippe H., Le Guyader H. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14614–14617. doi: 10.1073/pnas.93.25.14614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Gill J. F., Jr, Beach M. J., Rodwell V. W. Mevalonate utilization in Pseudomonas sp. M. Purification and characterization of an inducible 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem. 1985 Aug 5;260(16):9393–9398. [PubMed] [Google Scholar]
  106. Gogarten J. P., Kibak H., Dittrich P., Taiz L., Bowman E. J., Bowman B. J., Manolson M. F., Poole R. J., Date T., Oshima T. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6661–6665. doi: 10.1073/pnas.86.17.6661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Golding G. B., Gupta R. S. Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol. 1995 Jan;12(1):1–6. doi: 10.1093/oxfordjournals.molbev.a040178. [DOI] [PubMed] [Google Scholar]
  108. Goodman H. J., Woods D. R. Cloning and nucleotide sequence of the Butyrivibrio fibrisolvens gene encoding a type III glutamine synthetase. J Gen Microbiol. 1993 Jul;139(7):1487–1493. doi: 10.1099/00221287-139-7-1487. [DOI] [PubMed] [Google Scholar]
  109. Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. doi: 10.1016/s0074-7696(08)62068-9. [DOI] [PubMed] [Google Scholar]
  110. Gupta R. S., Aitken K., Falah M., Singh B. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2895–2899. doi: 10.1073/pnas.91.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Gupta R. S. Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol. 1995 Jan;15(1):1–11. doi: 10.1111/j.1365-2958.1995.tb02216.x. [DOI] [PubMed] [Google Scholar]
  112. Gupta R. S., Golding G. B. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol. 1993 Dec;37(6):573–582. doi: 10.1007/BF00182743. [DOI] [PubMed] [Google Scholar]
  113. Gupta R. S., Golding G. B. The origin of the eukaryotic cell. Trends Biochem Sci. 1996 May;21(5):166–171. [PubMed] [Google Scholar]
  114. Gupta R. S., Singh B. Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene. J Bacteriol. 1992 Jul;174(14):4594–4605. doi: 10.1128/jb.174.14.4594-4605.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Gupta R. S., Singh B. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol. 1994 Dec 1;4(12):1104–1114. doi: 10.1016/s0960-9822(00)00249-9. [DOI] [PubMed] [Google Scholar]
  116. Gupta R. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J Biol Chem. 1984 Aug 10;259(15):9461–9471. [PubMed] [Google Scholar]
  117. Görisch H., Jany K. D. Archaebacterial malate dehydrogenase: the amino-terminal sequence of the enzyme from Sulfolobus acidocaldarius is homologous to the eubacterial and eukaryotic malate dehydrogenases. FEBS Lett. 1989 Apr 24;247(2):259–262. doi: 10.1016/0014-5793(89)81348-1. [DOI] [PubMed] [Google Scholar]
  118. Hamilton P. T., Reeve J. N. Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii. Mol Gen Genet. 1985;200(1):47–59. doi: 10.1007/BF00383311. [DOI] [PubMed] [Google Scholar]
  119. Hashimoto T., Hasegawa M. Origin and early evolution of eukaryotes inferred from the amino acid sequences of translation elongation factors 1alpha/Tu and 2/G. Adv Biophys. 1996;32:73–120. doi: 10.1016/0065-227x(96)84742-3. [DOI] [PubMed] [Google Scholar]
  120. Henderson E., Oakes M., Clark M. W., Lake J. A., Matheson A. T., Zillig W. A new ribosome structure. Science. 1984 Aug 3;225(4661):510–512. doi: 10.1126/science.6429855. [DOI] [PubMed] [Google Scholar]
  121. Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Hensel R., Zwickl P., Fabry S., Lang J., Palm P. Sequence comparison of glyceraldehyde-3-phosphate dehydrogenases from the three urkingdoms: evolutionary implication. Can J Microbiol. 1989 Jan;35(1):81–85. doi: 10.1139/m89-012. [DOI] [PubMed] [Google Scholar]
  123. Henze K., Badr A., Wettern M., Cerff R., Martin W. A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9122–9126. doi: 10.1073/pnas.92.20.9122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Hilario E., Gogarten J. P. Horizontal transfer of ATPase genes--the tree of life becomes a net of life. Biosystems. 1993;31(2-3):111–119. doi: 10.1016/0303-2647(93)90038-e. [DOI] [PubMed] [Google Scholar]
  125. Hill R. T., Parker J. R., Goodman H. J., Jones D. T., Woods D. R. Molecular analysis of a novel glutamine synthetase of the anaerobe Bacteroides fragilis. J Gen Microbiol. 1989 Dec;135(12):3271–3279. doi: 10.1099/00221287-135-12-3271. [DOI] [PubMed] [Google Scholar]
  126. Hirata R., Ohsumk Y., Nakano A., Kawasaki H., Suzuki K., Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed] [Google Scholar]
  127. Holliday R. Ambidextrous RNA. Nature. 1990 Dec 6;348(6301):491–492. doi: 10.1038/348491b0. [DOI] [PubMed] [Google Scholar]
  128. Holmes M. L., Dyall-Smith M. L. Mutations in DNA gyrase result in novobiocin resistance in halophilic archaebacteria. J Bacteriol. 1991 Jan;173(2):642–648. doi: 10.1128/jb.173.2.642-648.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Honka E., Fabry S., Niermann T., Palm P., Hensel R. Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. Eur J Biochem. 1990 Mar 30;188(3):623–632. doi: 10.1111/j.1432-1033.1990.tb15443.x. [DOI] [PubMed] [Google Scholar]
  130. Imanaka T., Lee S., Takagi M., Fujiwara S. Aspartyl-tRNA synthetase of the hyperthermophilic archaeon Pyrococcus sp. KOD1 has a chimerical structure of eukaryotic and bacterial enzymes. Gene. 1995 Oct 16;164(1):153–156. doi: 10.1016/0378-1119(95)00491-n. [DOI] [PubMed] [Google Scholar]
  131. Ismail S. O., Skeiky Y. A., Bhatia A., Omara-Opyene L. A., Gedamu L. Molecular cloning, characterization, and expression in Escherichia coli of iron superoxide dismutase cDNA from Leishmania donovani chagasi. Infect Immun. 1994 Feb;62(2):657–664. doi: 10.1128/iai.62.2.657-664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  132. Itoh T. Sequence analysis of the peptide-elongation factor EF-2 gene, downstream from those of ribosomal proteins H-S12 and H-S7, from the archaebacterial extreme halophile, Halobacterium halobium. Eur J Biochem. 1989 Dec 8;186(1-2):213–219. doi: 10.1111/j.1432-1033.1989.tb15197.x. [DOI] [PubMed] [Google Scholar]
  133. Iwabe N., Kuma K., Hasegawa M., Osawa S., Miyata T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9355–9359. doi: 10.1073/pnas.86.23.9355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Iwabe N., Kuma K., Kishino H., Hasegawa M., Miyata T. Evolution of RNA polymerases and branching patterns of the three major groups of Archaebacteria. J Mol Evol. 1991 Jan;32(1):70–78. doi: 10.1007/BF02099931. [DOI] [PubMed] [Google Scholar]
  135. Jahn D., Verkamp E., Söll D. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci. 1992 Jun;17(6):215–218. doi: 10.1016/0968-0004(92)90380-r. [DOI] [PubMed] [Google Scholar]
  136. Jenal U., Rechsteiner T., Tan P. Y., Bühlmann E., Meile L., Leisinger T. Isoleucyl-tRNA synthetase of Methanobacterium thermoautotrophicum Marburg. Cloning of the gene, nucleotide sequence, and localization of a base change conferring resistance to pseudomonic acid. J Biol Chem. 1991 Jun 5;266(16):10570–10577. [PubMed] [Google Scholar]
  137. Jensen R. A., Gu W. Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases. J Bacteriol. 1996 Apr;178(8):2161–2171. doi: 10.1128/jb.178.8.2161-2171.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Joshi P., Dennis P. P. Characterization of paralogous and orthologous members of the superoxide dismutase gene family from genera of the halophilic archaebacteria. J Bacteriol. 1993 Mar;175(6):1561–1571. doi: 10.1128/jb.175.6.1561-1571.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Joshi P., Dennis P. P. Structure, function, and evolution of the family of superoxide dismutase proteins from halophilic archaebacteria. J Bacteriol. 1993 Mar;175(6):1572–1579. doi: 10.1128/jb.175.6.1572-1579.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Kakinuma Y., Igarashi K., Konishi K., Yamato I. Primary structure of the alpha-subunit of vacuolar-type Na(+)-ATPase in Enterococcus hirae. Amplification of a 1000-bp fragment by polymerase chain reaction. FEBS Lett. 1991 Nov 4;292(1-2):64–68. doi: 10.1016/0014-5793(91)80835-q. [DOI] [PubMed] [Google Scholar]
  141. Kane P. M., Yamashiro C. T., Wolczyk D. F., Neff N., Goebl M., Stevens T. H. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. doi: 10.1126/science.2146742. [DOI] [PubMed] [Google Scholar]
  142. Kang H. A., Hershey J. W. Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J Biol Chem. 1994 Feb 11;269(6):3934–3940. [PubMed] [Google Scholar]
  143. Kath T., Schäfer G. A secY homologous gene in the crenarchaeon Sulfolobus acidocaldarius. Biochim Biophys Acta. 1995 Nov 7;1264(2):155–158. doi: 10.1016/0167-4781(95)00165-d. [DOI] [PubMed] [Google Scholar]
  144. Keeling P. J., Charlebois R. L., Doolittle W. F. Archaebacterial genomes: eubacterial form and eukaryotic content. Curr Opin Genet Dev. 1994 Dec;4(6):816–822. doi: 10.1016/0959-437x(94)90065-5. [DOI] [PubMed] [Google Scholar]
  145. Keeling P. J., Doolittle W. F. Archaea: narrowing the gap between prokaryotes and eukaryotes. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5761–5764. doi: 10.1073/pnas.92.13.5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Keeling P. J., Doolittle W. F. Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1270–1275. doi: 10.1073/pnas.94.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Keeling P. J., Doolittle W. F. Methionine aminopeptidase-1: the MAP of the mitochondrion? Trends Biochem Sci. 1996 Aug;21(8):285–286. [PubMed] [Google Scholar]
  148. Kengen S. W., de Bok F. A., van Loo N. D., Dijkema C., Stams A. J., de Vos W. M. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J Biol Chem. 1994 Jul 1;269(26):17537–17541. [PubMed] [Google Scholar]
  149. Kim C. W., Markiewicz P., Lee J. J., Schierle C. F., Miller J. H. Studies of the hyperthermophile Thermotoga maritima by random sequencing of cDNA and genomic libraries. Identification and sequencing of the trpEG (D) operon. J Mol Biol. 1993 Jun 20;231(4):960–981. doi: 10.1006/jmbi.1993.1345. [DOI] [PubMed] [Google Scholar]
  150. Kim S., Willison K. R., Horwich A. L. Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem Sci. 1994 Dec;19(12):543–548. doi: 10.1016/0968-0004(94)90058-2. [DOI] [PubMed] [Google Scholar]
  151. Kleman-Leyer K., Armbruster D. W., Daniels C. J. Properties of H. volcanii tRNA intron endonuclease reveal a relationship between the archaeal and eucaryal tRNA intron processing systems. Cell. 1997 Jun 13;89(6):839–847. doi: 10.1016/s0092-8674(00)80269-x. [DOI] [PubMed] [Google Scholar]
  152. Klenk H. P., Doolittle W. F. Evolution. Archaea and eukaryotes versus bacteria? Curr Biol. 1994 Oct 1;4(10):920–922. doi: 10.1016/s0960-9822(00)00206-2. [DOI] [PubMed] [Google Scholar]
  153. Klenk H. P., Palm P., Lottspeich F., Zillig W. Component H of the DNA-dependent RNA polymerases of Archaea is homologous to a subunit shared by the three eucaryal nuclear RNA polymerases. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):407–410. doi: 10.1073/pnas.89.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Klenk H. P., Schleper C., Schwass V., Brudler R. Nucleotide sequence, transcription and phylogeny of the gene encoding the superoxide dismutase of Sulfolobus acidocaldarius. Biochim Biophys Acta. 1993 Jul 18;1174(1):95–98. doi: 10.1016/0167-4781(93)90099-y. [DOI] [PubMed] [Google Scholar]
  155. Klenk H. P., Zillig W. DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: branching topology of the archaeal domain. J Mol Evol. 1994 Apr;38(4):420–432. doi: 10.1007/BF00163158. [DOI] [PubMed] [Google Scholar]
  156. Kletzin A. Molecular characterisation of a DNA ligase gene of the extremely thermophilic archaeon Desulfurolobus ambivalens shows close phylogenetic relationship to eukaryotic ligases. Nucleic Acids Res. 1992 Oct 25;20(20):5389–5396. doi: 10.1093/nar/20.20.5389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Koga Y., Nishihara M., Morii H., Akagawa-Matsushita M. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol Rev. 1993 Mar;57(1):164–182. doi: 10.1128/mr.57.1.164-182.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Kohlhoff M., Dahm A., Hensel R. Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett. 1996 Apr 1;383(3):245–250. doi: 10.1016/0014-5793(96)00249-9. [DOI] [PubMed] [Google Scholar]
  159. Krömer W. J., Arndt E. Halobacterial S9 operon. Three ribosomal protein genes are cotranscribed with genes encoding a tRNA(Leu), the enolase, and a putative membrane protein in the archaebacterium Haloarcula (Halobacterium) marismortui. J Biol Chem. 1991 Dec 25;266(36):24573–24579. [PubMed] [Google Scholar]
  160. Kumada Y., Benson D. R., Hillemann D., Hosted T. J., Rochefort D. A., Thompson C. J., Wohlleben W., Tateno Y. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3009–3013. doi: 10.1073/pnas.90.7.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Kumada Y., Takano E., Nagaoka K., Thompson C. J. Streptomyces hygroscopicus has two glutamine synthetase genes. J Bacteriol. 1990 Sep;172(9):5343–5351. doi: 10.1128/jb.172.9.5343-5351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Lake J. A., Clark M. W., Henderson E., Fay S. P., Oakes M., Scheinman A., Thornber J. P., Mah R. A. Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3716–3720. doi: 10.1073/pnas.82.11.3716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Lake J. A., Henderson E., Oakes M., Clark M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3786–3790. doi: 10.1073/pnas.81.12.3786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Lake J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature. 1988 Jan 14;331(6152):184–186. doi: 10.1038/331184a0. [DOI] [PubMed] [Google Scholar]
  165. Lake J. A., Rivera M. C. Was the nucleus the first endosymbiont? Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2880–2881. doi: 10.1073/pnas.91.8.2880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Lam W. L., Cohen A., Tsouluhas D., Doolittle W. F. Genes for tryptophan biosynthesis in the archaebacterium Haloferax volcanii. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6614–6618. doi: 10.1073/pnas.87.17.6614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Lam W. L., Doolittle W. F. Mevinolin-resistant mutations identify a promoter and the gene for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the archaebacterium Haloferax volcanii. J Biol Chem. 1992 Mar 25;267(9):5829–5834. [PubMed] [Google Scholar]
  168. Lam W. L., Logan S. M., Doolittle W. F. Genes for tryptophan biosynthesis in the halophilic archaebacterium Haloferax volcanii: the trpDFEG cluster. J Bacteriol. 1992 Mar;174(5):1694–1697. doi: 10.1128/jb.174.5.1694-1697.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Lamour V., Quevillon S., Diriong S., N'Guyen V. C., Lipinski M., Mirande M. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8670–8674. doi: 10.1073/pnas.91.18.8670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Langer D., Hain J., Thuriaux P., Zillig W. Transcription in archaea: similarity to that in eucarya. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5768–5772. doi: 10.1073/pnas.92.13.5768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Lanzendörfer M., Palm P., Grampp B., Peattie D. A., Zillig W. Nucleotide sequence of the gene encoding the largest subunit of the DNA-dependent RNA polymerase III of Giardia lamblia. Nucleic Acids Res. 1992 Mar 11;20(5):1145–1145. doi: 10.1093/nar/20.5.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Lapointe J., Duplain L., Proulx M. A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro. J Bacteriol. 1986 Jan;165(1):88–93. doi: 10.1128/jb.165.1.88-93.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Larkin J. M., Henk M. C. Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico. Microsc Res Tech. 1996 Jan 1;33(1):23–31. doi: 10.1002/(SICI)1097-0029(199601)33:1<23::AID-JEMT4>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  174. Latimer M. T., Ferry J. G. Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila. J Bacteriol. 1993 Nov;175(21):6822–6829. doi: 10.1128/jb.175.21.6822-6829.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Lawson F. S., Charlebois R. L., Dillon J. A. Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life. Mol Biol Evol. 1996 Sep;13(7):970–977. doi: 10.1093/oxfordjournals.molbev.a025665. [DOI] [PubMed] [Google Scholar]
  176. Leffers H., Gropp F., Lottspeich F., Zillig W., Garrett R. A. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. J Mol Biol. 1989 Mar 5;206(1):1–17. doi: 10.1016/0022-2836(89)90519-6. [DOI] [PubMed] [Google Scholar]
  177. Leyva-Vazquez M. A., Setlow P. Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. J Bacteriol. 1994 Jul;176(13):3903–3910. doi: 10.1128/jb.176.13.3903-3910.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Liao D., Dennis P. P. Molecular phylogenies based on ribosomal protein L11, L1, L10, and L12 sequences. J Mol Evol. 1994 Apr;38(4):405–419. doi: 10.1007/BF00163157. [DOI] [PubMed] [Google Scholar]
  179. Lill U., Lefrank S., Henschen A., Eggerer H. Conversion, by limited proteolysis, of an archaebacterial citrate synthase into essentially a citryl-CoA hydrolase. Eur J Biochem. 1992 Sep 1;208(2):459–466. doi: 10.1111/j.1432-1033.1992.tb17208.x. [DOI] [PubMed] [Google Scholar]
  180. Lindmark D. G. Energy metabolism of the anaerobic protozoon Giardia lamblia. Mol Biochem Parasitol. 1980 Mar;1(1):1–12. doi: 10.1016/0166-6851(80)90037-7. [DOI] [PubMed] [Google Scholar]
  181. Longstaff M., Raines C. A., McMorrow E. M., Bradbeer J. W., Dyer T. A. Wheat phosphoglycerate kinase: evidence for recombination between the genes for the chloroplastic and cytosolic enzymes. Nucleic Acids Res. 1989 Aug 25;17(16):6569–6580. doi: 10.1093/nar/17.16.6569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Lupas A., Zwickl P., Baumeister W. Proteasome sequences in eubacteria. Trends Biochem Sci. 1994 Dec;19(12):533–534. doi: 10.1016/0968-0004(94)90054-x. [DOI] [PubMed] [Google Scholar]
  183. Lupas A., Zühl F., Tamura T., Wolf S., Nagy I., De Mot R., Baumeister W. Eubacterial proteasomes. Mol Biol Rep. 1997 Mar;24(1-2):125–131. doi: 10.1023/a:1006803512761. [DOI] [PubMed] [Google Scholar]
  184. Margulis L., Guerrero R. Kingdoms in turmoil. New Sci. 1991 Mar 23;1761:46–50. [PubMed] [Google Scholar]
  185. Markos A., Miretsky A., Müller M. A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis. J Mol Evol. 1993 Dec;37(6):631–643. doi: 10.1007/BF00182749. [DOI] [PubMed] [Google Scholar]
  186. Marsh T. L., Reich C. I., Whitelock R. B., Olsen G. J. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4180–4184. doi: 10.1073/pnas.91.10.4180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Martin W., Brinkmann H., Savonna C., Cerff R. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8692–8696. doi: 10.1073/pnas.90.18.8692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Maupin-Furlow J. A., Ferry J. G. A proteasome from the methanogenic archaeon Methanosarcina thermophila. J Biol Chem. 1995 Dec 1;270(48):28617–28622. doi: 10.1074/jbc.270.48.28617. [DOI] [PubMed] [Google Scholar]
  189. May B. P., Dennis P. P. Unusual evolution of a superoxide dismutase-like gene from the extremely halophilic archaebacterium Halobacterium cutirubrum. J Bacteriol. 1990 Jul;172(7):3725–3729. doi: 10.1128/jb.172.7.3725-3729.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Mehta P. K., Hale T. I., Christen P. Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem. 1993 Jun 1;214(2):549–561. doi: 10.1111/j.1432-1033.1993.tb17953.x. [DOI] [PubMed] [Google Scholar]
  191. Meile L., Stettler R., Banholzer R., Kotik M., Leisinger T. Tryptophan gene cluster of Methanobacterium thermoautotrophicum Marburg: molecular cloning and nucleotide sequence of a putative trpEGCFBAD operon. J Bacteriol. 1991 Aug;173(16):5017–5023. doi: 10.1128/jb.173.16.5017-5023.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Michels P. A., Marchand M., Kohl L., Allert S., Wierenga R. K., Opperdoes F. R. The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship. Eur J Biochem. 1991 Jun 1;198(2):421–428. doi: 10.1111/j.1432-1033.1991.tb16031.x. [DOI] [PubMed] [Google Scholar]
  193. Moras D. Structural and functional relationships between aminoacyl-tRNA synthetases. Trends Biochem Sci. 1992 Apr;17(4):159–164. doi: 10.1016/0968-0004(92)90326-5. [DOI] [PubMed] [Google Scholar]
  194. Morris C. J., Reeve J. N. Conservation of structure in the human gene encoding argininosuccinate synthetase and the argG genes of the archaebacteria Methanosarcina barkeri MS and Methanococcus vannielii. J Bacteriol. 1988 Jul;170(7):3125–3130. doi: 10.1128/jb.170.7.3125-3130.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Muir J. M., Russell R. J., Hough D. W., Danson M. J. Citrate synthase from the hyperthermophilic Archaeon, Pyrococcus furiosus. Protein Eng. 1995 Jun;8(6):583–592. doi: 10.1093/protein/8.6.583. [DOI] [PubMed] [Google Scholar]
  196. Musgrave D. R., Sandman K. M., Reeve J. N. DNA binding by the archaeal histone HMf results in positive supercoiling. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10397–10401. doi: 10.1073/pnas.88.23.10397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Nagel G. M., Doolittle R. F. Evolution and relatedness in two aminoacyl-tRNA synthetase families. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8121–8125. doi: 10.1073/pnas.88.18.8121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Nagel G. M., Doolittle R. F. Phylogenetic analysis of the aminoacyl-tRNA synthetases. J Mol Evol. 1995 May;40(5):487–498. doi: 10.1007/BF00166617. [DOI] [PubMed] [Google Scholar]
  199. Neumann-Spallart C., Jakowitsch J., Kraus M., Brandtner M., Bohnert H. J., Löffelhardt W. rps10, unreported for plastid DNAs, is located on the cyanelle genome of Cyanophora paradoxa and is cotranscribed with the str operon genes. Curr Genet. 1991 Apr;19(4):313–315. doi: 10.1007/BF00355061. [DOI] [PubMed] [Google Scholar]
  200. Nyunoya H., Lusty C. J. The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4629–4633. doi: 10.1073/pnas.80.15.4629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Nölling J., de Vos W. M. Characterization of the archaeal, plasmid-encoded type II restriction-modification system MthTI from Methanobacterium thermoformicicum THF: homology to the bacterial NgoPII system from Neisseria gonorrhoeae. J Bacteriol. 1992 Sep;174(17):5719–5726. doi: 10.1128/jb.174.17.5719-5726.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Olsen G. J., Woese C. R. Ribosomal RNA: a key to phylogeny. FASEB J. 1993 Jan;7(1):113–123. doi: 10.1096/fasebj.7.1.8422957. [DOI] [PubMed] [Google Scholar]
  204. Osteryoung K. W., Vierling E. Conserved cell and organelle division. Nature. 1995 Aug 10;376(6540):473–474. doi: 10.1038/376473b0. [DOI] [PubMed] [Google Scholar]
  205. Ouzounis C., Sander C. TFIIB, an evolutionary link between the transcription machineries of archaebacteria and eukaryotes. Cell. 1992 Oct 16;71(2):189–190. doi: 10.1016/0092-8674(92)90347-f. [DOI] [PubMed] [Google Scholar]
  206. Palmer J. D., Logsdon J. M., Jr The recent origins of introns. Curr Opin Genet Dev. 1991 Dec;1(4):470–477. doi: 10.1016/s0959-437x(05)80194-7. [DOI] [PubMed] [Google Scholar]
  207. Paulus T. J., Switzer R. L. Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis. J Bacteriol. 1979 Jan;137(1):82–91. doi: 10.1128/jb.137.1.82-91.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Perler F. B., Comb D. G., Jack W. E., Moran L. S., Qiang B., Kucera R. B., Benner J., Slatko B. E., Nwankwo D. O., Hempstead S. K. Intervening sequences in an Archaea DNA polymerase gene. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5577–5581. doi: 10.1073/pnas.89.12.5577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Pesole G., Bozzetti M. P., Lanave C., Preparata G., Saccone C. Glutamine synthetase gene evolution: a good molecular clock. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):522–526. doi: 10.1073/pnas.88.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Pisani F. M., De Martino C., Rossi M. A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family B DNA polymerases. Nucleic Acids Res. 1992 Jun 11;20(11):2711–2716. doi: 10.1093/nar/20.11.2711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Possot O., Sibold L., Aubert J. P. Nucleotide sequence and expression of the glutamine synthetase structural gene, glnA, of the archaebacterium Methanococcus voltae. Res Microbiol. 1989 Jul-Aug;140(6):355–371. doi: 10.1016/0923-2508(89)90012-0. [DOI] [PubMed] [Google Scholar]
  212. Potter S., Durovic P., Dennis P. P. Ribosomal RNA precursor processing by a eukaryotic U3 small nucleolar RNA-like molecule in an archaeon. Science. 1995 May 19;268(5213):1056–1060. doi: 10.1126/science.7538698. [DOI] [PubMed] [Google Scholar]
  213. Potter S., Fothergill-Gilmore L. A. Purification and properties of pyruvate kinase from Thermoplasma acidophilum. FEMS Microbiol Lett. 1992 Jul 15;73(3):235–239. doi: 10.1016/0378-1097(92)90636-3. [DOI] [PubMed] [Google Scholar]
  214. Preston C. M., Wu K. Y., Molinski T. F., DeLong E. F. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6241–6246. doi: 10.1073/pnas.93.13.6241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Prüss B., Meyer H. E., Holldorf A. W. Characterization of the glyceraldehyde 3-phosphate dehydrogenase from the extremely halophilic archaebacterium Haloarcula vallismortis. Arch Microbiol. 1993;160(1):5–11. doi: 10.1007/BF00258139. [DOI] [PubMed] [Google Scholar]
  216. Pühler G., Leffers H., Gropp F., Palm P., Klenk H. P., Lottspeich F., Garrett R. A., Zillig W. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4569–4573. doi: 10.1073/pnas.86.12.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Pühler G., Lottspeich F., Zillig W. Organization and nucleotide sequence of the genes encoding the large subunits A, B and C of the DNA-dependent RNA polymerase of the archaebacterium Sulfolobus acidocaldarius. Nucleic Acids Res. 1989 Jun 26;17(12):4517–4534. doi: 10.1093/nar/17.12.4517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Qureshi S. A., Khoo B., Baumann P., Jackson S. P. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6077–6081. doi: 10.1073/pnas.92.13.6077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Ragan M. A., Logsdon J. M., Jr, Sensen C. W., Charlebois R. L., Doolittle W. F. An archaebacterial homolog of pelota, a meiotic cell division protein in eukaryotes. FEMS Microbiol Lett. 1996 Nov 1;144(2-3):151–155. doi: 10.1111/j.1574-6968.1996.tb08522.x. [DOI] [PubMed] [Google Scholar]
  220. Ramírez C., Shimmin L. C., Leggatt P., Matheson A. T. Structure and transcription of the L11-L1-L10-L12 ribosomal protein gene operon from the extreme thermophilic archaeon Sulfolobus acidocaldarius. J Mol Biol. 1994 Nov 25;244(2):242–249. doi: 10.1006/jmbi.1994.1723. [DOI] [PubMed] [Google Scholar]
  221. Rashid N., Morikawa M., Nagahisa K., Kanaya S., Imanaka T. Characterization of a RecA/RAD51 homologue from the hyperthermophilic archaeon Pyrococcus sp. KOD1. Nucleic Acids Res. 1997 Feb 15;25(4):719–726. doi: 10.1093/nar/25.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Reeve J. N. Molecular biology of methanogens. Annu Rev Microbiol. 1992;46:165–191. doi: 10.1146/annurev.mi.46.100192.001121. [DOI] [PubMed] [Google Scholar]
  223. Reeve J. N., Sandman K., Daniels C. J. Archaeal histones, nucleosomes, and transcription initiation. Cell. 1997 Jun 27;89(7):999–1002. doi: 10.1016/s0092-8674(00)80286-x. [DOI] [PubMed] [Google Scholar]
  224. Reeves R. E., Warren L. G., Susskind B., Lo H. S. An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem. 1977 Jan 25;252(2):726–731. [PubMed] [Google Scholar]
  225. Reiter W. D., Hüdepohl U., Zillig W. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9509–9513. doi: 10.1073/pnas.87.24.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Rensing S. A., Maier U. G. The SecY protein family: comparative analysis and phylogenetic relationships. Mol Phylogenet Evol. 1994 Sep;3(3):187–191. doi: 10.1006/mpev.1994.1021. [DOI] [PubMed] [Google Scholar]
  227. Ribas de Pouplana L., Frugier M., Quinn C. L., Schimmel P. Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):166–170. doi: 10.1073/pnas.93.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Riley M. Functions of the gene products of Escherichia coli. Microbiol Rev. 1993 Dec;57(4):862–952. doi: 10.1128/mr.57.4.862-952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Rivera M. C., Lake J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science. 1992 Jul 3;257(5066):74–76. doi: 10.1126/science.1621096. [DOI] [PubMed] [Google Scholar]
  230. Rochefort D. A., Benson D. R. Molecular cloning, sequencing, and expression of the glutamine synthetase II (glnII) gene from the actinomycete root nodule symbiont Frankia sp. strain CpI1. J Bacteriol. 1990 Sep;172(9):5335–5342. doi: 10.1128/jb.172.9.5335-5342.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Roger A. J., Brown J. R. A chimeric origin for eukaryotes re-examined. Trends Biochem Sci. 1996 Oct;21(10):370–372. [PubMed] [Google Scholar]
  232. Roger A. J., Clark C. G., Doolittle W. F. A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14618–14622. doi: 10.1073/pnas.93.25.14618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Rowlands T., Baumann P., Jackson S. P. The TATA-binding protein: a general transcription factor in eukaryotes and archaebacteria. Science. 1994 May 27;264(5163):1326–1329. doi: 10.1126/science.8191287. [DOI] [PubMed] [Google Scholar]
  234. Russell A. G., de Sa M. M., Dennis P. P. A U3-like small nucleolar RNA in Archaea. Science. 1997 Aug 29;277(5330):1189–1189. doi: 10.1126/science.277.5330.1185d. [DOI] [PubMed] [Google Scholar]
  235. Russell R. J., Hough D. W., Danson M. J., Taylor G. L. The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure. 1994 Dec 15;2(12):1157–1167. doi: 10.1016/s0969-2126(94)00118-9. [DOI] [PubMed] [Google Scholar]
  236. STANIER R. Y., VAN NIEL C. B. The concept of a bacterium. Arch Mikrobiol. 1962;42:17–35. doi: 10.1007/BF00425185. [DOI] [PubMed] [Google Scholar]
  237. Sanangelantoni A. M., Barbarini D., Di Pasquale G., Cammarano P., Tiboni O. Cloning and nucleotide sequence of an archaebacterial glutamine synthetase gene: phylogenetic implications. Mol Gen Genet. 1990 Apr;221(2):187–194. doi: 10.1007/BF00261719. [DOI] [PubMed] [Google Scholar]
  238. Sanangelantoni A. M., Tiboni O. The chromosomal location of genes for elongation factor Tu and ribosomal protein S10 in the cyanobacterium Spirulina platensis provides clues to the ancestral organization of the str and S10 operons in prokaryotes. J Gen Microbiol. 1993 Nov;139(11):2579–2584. doi: 10.1099/00221287-139-11-2579. [DOI] [PubMed] [Google Scholar]
  239. Sandler S. J., Satin L. H., Samra H. S., Clark A. J. recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 1996 Jun 1;24(11):2125–2132. doi: 10.1093/nar/24.11.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Sandman K., Krzycki J. A., Dobrinski B., Lurz R., Reeve J. N. HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5788–5791. doi: 10.1073/pnas.87.15.5788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Sarich V. M., Wilson A. C. Generation time and genomic evolution in primates. Science. 1973 Mar 16;179(4078):1144–1147. doi: 10.1126/science.179.4078.1144. [DOI] [PubMed] [Google Scholar]
  242. Schofield J. P. Molecular studies on an ancient gene encoding for carbamoyl-phosphate synthetase. Clin Sci (Lond) 1993 Feb;84(2):119–128. doi: 10.1042/cs0840119. [DOI] [PubMed] [Google Scholar]
  243. Shatters R. G., Kahn M. L. Glutamine synthetase II in Rhizobium: reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes. J Mol Evol. 1989 Nov;29(5):422–428. doi: 10.1007/BF02602912. [DOI] [PubMed] [Google Scholar]
  244. Shimmin L. C., Dennis P. P. Characterization of the L11, L1, L10 and L12 equivalent ribosomal protein gene cluster of the halophilic archaebacterium Halobacterium cutirubrum. EMBO J. 1989 Apr;8(4):1225–1235. doi: 10.1002/j.1460-2075.1989.tb03496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Shimmin L. C., Ramirez C., Matheson A. T., Dennis P. P. Sequence alignment and evolutionary comparison of the L10 equivalent and L12 equivalent ribosomal proteins from archaebacteria, eubacteria, and eucaryotes. J Mol Evol. 1989 Nov;29(5):448–462. doi: 10.1007/BF02602915. [DOI] [PubMed] [Google Scholar]
  246. Sibold L., Henriquet M. Cloning of the trp genes from the archaebacterium Methanococcus voltae: nucleotide sequence of the trpBA genes. Mol Gen Genet. 1988 Nov;214(3):439–450. doi: 10.1007/BF00330478. [DOI] [PubMed] [Google Scholar]
  247. Slesarev A. I., Stetter K. O., Lake J. A., Gellert M., Krah R., Kozyavkin S. A. DNA topoisomerase V is a relative of eukaryotic topoisomerase I from a hyperthermophilic prokaryote. Nature. 1993 Aug 19;364(6439):735–737. doi: 10.1038/364735a0. [DOI] [PubMed] [Google Scholar]
  248. Smith M. W., Doolittle R. F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase. J Mol Evol. 1992 Feb;34(2):175–184. doi: 10.1007/BF00182394. [DOI] [PubMed] [Google Scholar]
  249. Smith M. W., Feng D. F., Doolittle R. F. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci. 1992 Dec;17(12):489–493. doi: 10.1016/0968-0004(92)90335-7. [DOI] [PubMed] [Google Scholar]
  250. Sogin M. L. Early evolution and the origin of eukaryotes. Curr Opin Genet Dev. 1991 Dec;1(4):457–463. doi: 10.1016/s0959-437x(05)80192-3. [DOI] [PubMed] [Google Scholar]
  251. Sogin M. L. Early evolution and the origin of eukaryotes. Curr Opin Genet Dev. 1991 Dec;1(4):457–463. doi: 10.1016/s0959-437x(05)80192-3. [DOI] [PubMed] [Google Scholar]
  252. Sorokine I., Ben-Mahrez K., Nakayama M., Kohiyama M. Exonuclease activities associated with DNA polymerases alpha and beta of the archaebacterium Halobacterium halobium. Eur J Biochem. 1991 May 8;197(3):781–784. doi: 10.1111/j.1432-1033.1991.tb15971.x. [DOI] [PubMed] [Google Scholar]
  253. Stanier R. Y., Van Niel C. B. The Main Outlines of Bacterial Classification. J Bacteriol. 1941 Oct;42(4):437–466. doi: 10.1128/jb.42.4.437-466.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Starich M. R., Sandman K., Reeve J. N., Summers M. F. NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. J Mol Biol. 1996 Jan 12;255(1):187–203. doi: 10.1006/jmbi.1996.0016. [DOI] [PubMed] [Google Scholar]
  255. Stein J. L., Simon M. I. Archaeal ubiquity. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6228–6230. doi: 10.1073/pnas.93.13.6228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Stöffler-Meilicke M., Böhme C., Strobel O., Böck A., Stöffler G. Structure of Ribosomal Subunits of M. vannielii: Ribosomal Morphology as a Phylogenetic Marker. Science. 1986 Mar 14;231(4743):1306–1308. doi: 10.1126/science.231.4743.1306. [DOI] [PubMed] [Google Scholar]
  257. Sumi M., Sato M. H., Denda K., Date T., Yoshida M. A DNA fragment homologous to F1-ATPase beta subunit was amplified from genomic DNA of Methanosarcina barkeri. Indication of an archaebacterial F-type ATPase. FEBS Lett. 1992 Dec 21;314(3):207–210. doi: 10.1016/0014-5793(92)81472-x. [DOI] [PubMed] [Google Scholar]
  258. Sutherland K. J., Henneke C. M., Towner P., Hough D. W., Danson M. J. Citrate synthase from the thermophilic archaebacterium Thermoplasma acidophilium. Cloning and sequencing of the gene. Eur J Biochem. 1990 Dec 27;194(3):839–844. doi: 10.1111/j.1432-1033.1990.tb19477.x. [DOI] [PubMed] [Google Scholar]
  259. Takao M., Kobayashi T., Oikawa A., Yasui A. Tandem arrangement of photolyase and superoxide dismutase genes in Halobacterium halobium. J Bacteriol. 1989 Nov;171(11):6323–6329. doi: 10.1128/jb.171.11.6323-6329.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Takao M., Yasui A., Oikawa A. Unique characteristics of superoxide dismutase of a strictly anaerobic archaebacterium Methanobacterium thermoautotrophicum. J Biol Chem. 1991 Aug 5;266(22):14151–14154. [PubMed] [Google Scholar]
  261. Tannich E., Bruchhaus I., Walter R. D., Horstmann R. D. Pathogenic and nonpathogenic Entamoeba histolytica: identification and molecular cloning of an iron-containing superoxide dismutase. Mol Biochem Parasitol. 1991 Nov;49(1):61–71. doi: 10.1016/0166-6851(91)90130-x. [DOI] [PubMed] [Google Scholar]
  262. Thomm M. Archaeal transcription factors and their role in transcription initiation. FEMS Microbiol Rev. 1996 May;18(2-3):159–171. doi: 10.1111/j.1574-6976.1996.tb00234.x. [DOI] [PubMed] [Google Scholar]
  263. Tiboni O., Cammarano P., Sanangelantoni A. M. Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. J Bacteriol. 1993 May;175(10):2961–2969. doi: 10.1128/jb.175.10.2961-2969.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Tiboni O., Cantoni R., Creti R., Cammarano P., Sanangelantoni A. M. Phylogenetic depth of Thermotoga maritima inferred from analysis of the fus gene: amino acid sequence of elongation factor G and organization of the Thermotoga str operon. J Mol Evol. 1991 Aug;33(2):142–151. doi: 10.1007/BF02193628. [DOI] [PubMed] [Google Scholar]
  265. Trotta C. R., Miao F., Arn E. A., Stevens S. W., Ho C. K., Rauhut R., Abelson J. N. The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell. 1997 Jun 13;89(6):849–858. doi: 10.1016/s0092-8674(00)80270-6. [DOI] [PubMed] [Google Scholar]
  266. Tsutsumi S., Denda K., Yokoyama K., Oshima T., Date T., Yoshida M. Molecular cloning of genes encoding major two subunits of a eubacterial V-type ATPase from Thermus thermophilus. Biochim Biophys Acta. 1991 Dec 3;1098(1):13–20. [PubMed] [Google Scholar]
  267. Tutino M. L., Scarano G., Marino G., Sannia G., Cubellis M. V. Tryptophan biosynthesis genes trpEGC in the thermoacidophilic archaebacterium Sulfolobus solfataricus. J Bacteriol. 1993 Jan;175(1):299–302. doi: 10.1128/jb.175.1.299-302.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Viale A. M., Arakaki A. K. The chaperone connection to the origins of the eukaryotic organelles. FEBS Lett. 1994 Mar 21;341(2-3):146–151. doi: 10.1016/0014-5793(94)80446-x. [DOI] [PubMed] [Google Scholar]
  269. Wang J. C., Caron P. R., Kim R. A. The role of DNA topoisomerases in recombination and genome stability: a double-edged sword? Cell. 1990 Aug 10;62(3):403–406. doi: 10.1016/0092-8674(90)90002-v. [DOI] [PubMed] [Google Scholar]
  270. Wang X., Lutkenhaus J. FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol. 1996 Jul;21(2):313–319. doi: 10.1046/j.1365-2958.1996.6421360.x. [DOI] [PubMed] [Google Scholar]
  271. Watson R. J., Rastogi V. K. Cloning and nucleotide sequencing of Rhizobium meliloti aminotransferase genes: an aspartate aminotransferase required for symbiotic nitrogen fixation is atypical. J Bacteriol. 1993 Apr;175(7):1919–1928. doi: 10.1128/jb.175.7.1919-1928.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Weng M., Makaroff C. A., Zalkin H. Nucleotide sequence of Escherichia coli pyrG encoding CTP synthetase. J Biol Chem. 1986 Apr 25;261(12):5568–5574. [PubMed] [Google Scholar]
  273. Wenzel T., Baumeister W. Thermoplasma acidophilum proteasomes degrade partially unfolded and ubiquitin-associated proteins. FEBS Lett. 1993 Jul 12;326(1-3):215–218. doi: 10.1016/0014-5793(93)81793-y. [DOI] [PubMed] [Google Scholar]
  274. Wettach J., Gohl H. P., Tschochner H., Thomm M. Functional interaction of yeast and human TATA-binding proteins with an archaeal RNA polymerase and promoter. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):472–476. doi: 10.1073/pnas.92.2.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. White B. N., Bayley S. T. Further codon assignments in an extremely halophilic bacterium using a cell-free protein-synthesizing system and a ribosomal binding assay. Can J Biochem. 1972 Jun;50(6):600–609. doi: 10.1139/o72-082. [DOI] [PubMed] [Google Scholar]
  276. Winefield C. S., Farnden K. J., Reynolds P. H., Marshall C. J. Evolutionary analysis of aspartate aminotransferases. J Mol Evol. 1995 Apr;40(4):455–463. doi: 10.1007/BF00164031. [DOI] [PubMed] [Google Scholar]
  277. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Woese C. R., Fox G. E. The concept of cellular evolution. J Mol Evol. 1977 Sep 20;10(1):1–6. doi: 10.1007/BF01796132. [DOI] [PubMed] [Google Scholar]
  279. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Yajima H., Inoue H., Oikawa A., Yasui A. Cloning and functional characterization of a eucaryotic DNA photolyase gene from Neurospora crassa. Nucleic Acids Res. 1991 Oct 11;19(19):5359–5362. doi: 10.1093/nar/19.19.5359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Yasui A., Eker A. P., Yasuhira S., Yajima H., Kobayashi T., Takao M., Oikawa A. A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J. 1994 Dec 15;13(24):6143–6151. doi: 10.1002/j.1460-2075.1994.tb06961.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Zusman T., Rosenshine I., Boehm G., Jaenicke R., Leskiw B., Mevarech M. Dihydrofolate reductase of the extremely halophilic archaebacterium Halobacterium volcanii. The enzyme and its coding gene. J Biol Chem. 1989 Nov 15;264(32):18878–18883. [PubMed] [Google Scholar]
  283. Zwickl P., Fabry S., Bogedain C., Haas A., Hensel R. Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli. J Bacteriol. 1990 Aug;172(8):4329–4338. doi: 10.1128/jb.172.8.4329-4338.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Zwickl P., Grziwa A., Pühler G., Dahlmann B., Lottspeich F., Baumeister W. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry. 1992 Feb 4;31(4):964–972. doi: 10.1021/bi00119a004. [DOI] [PubMed] [Google Scholar]
  285. Zwickl P., Lottspeich F., Dahlmann B., Baumeister W. Cloning and sequencing of the gene encoding the large (alpha-) subunit of the proteasome from Thermoplasma acidophilum. FEBS Lett. 1991 Jan 28;278(2):217–221. doi: 10.1016/0014-5793(91)80120-r. [DOI] [PubMed] [Google Scholar]