A new approach to the problem of multiple comparisons in the genetic dissection of complex traits (original) (raw)

Abstract

Saturated genetic marker maps are being used to map individual genes affecting quantitative traits. Controlling the "experimentwise" type-I error severely lowers power to detect segregating loci. For preliminary genome scans, we propose controlling the "false discovery rate," that is, the expected proportion of true null hypotheses within the class of rejected null hypotheses. Examples are given based on a granddaughter design analysis of dairy cattle and simulated backcross populations. By controlling the false discovery rate, power to detect true effects is not dependent on the number of tests performed. If no detectable genes are segregating, controlling the false discovery rate is equivalent to controlling the experimentwise error rate. If quantitative loci are segregating in the population, statistical power is increased as compared to control of the experimentwise type-I error. The difference between the two criteria increases with the increase in the number of false null hypotheses. The false discovery rate can be controlled at the same level whether the complete genome or only part of it has been analyzed. Additional levels of contrasts, such as multiple traits or pedigrees, can be handled without the necessity of a proportional decrease in the critical test probability.

Full Text

The Full Text of this article is available as a PDF (107.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Darvasi A., Weinreb A., Minke V., Weller J. I., Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993 Jul;134(3):943–951. doi: 10.1093/genetics/134.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino A. T., Sargeant L. S., Sorensen A., Steele M. R., Zhao X. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 1995 Feb;139(2):907–920. doi: 10.1093/genetics/139.2.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  5. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
  7. Ron M., Band M., Yanai A., Weller J. I. Mapping quantitative trait loci with DNA microsatellites in a commercial dairy cattle population. Anim Genet. 1994 Aug;25(4):259–264. doi: 10.1111/j.1365-2052.1994.tb00202.x. [DOI] [PubMed] [Google Scholar]
  8. Sax K. The Association of Size Differences with Seed-Coat Pattern and Pigmentation in PHASEOLUS VULGARIS. Genetics. 1923 Nov;8(6):552–560. doi: 10.1093/genetics/8.6.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. VanRaden P. M., Wiggans G. R. Derivation, calculation, and use of national animal model information. J Dairy Sci. 1991 Aug;74(8):2737–2746. doi: 10.3168/jds.S0022-0302(91)78453-1. [DOI] [PubMed] [Google Scholar]
  10. Weller J. I., Kashi Y., Soller M. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci. 1990 Sep;73(9):2525–2537. doi: 10.3168/jds.S0022-0302(90)78938-2. [DOI] [PubMed] [Google Scholar]