Adhesive properties of Vibrio cholerae: nature of the interaction with isolated rabbit brush border membranes and human erythrocytes (original) (raw)

Abstract

Nonmotile vibrio mutants lacked the ability to adhere to rabbit intestinal brush border membranes and to agglutinate human group O erythrocytes, but motile revertant vibrios isolated from such strains expressed adhesiveness equivalent to that of the original parent. Two possible explanations for the relation between vibrio motility and adhesion in these assays systems are (i) that the rate of adhesion depends on the rate of chance contact brought about by motility, and (ii) that the flagellum either acts as a carrier for the bacterial adhesin or may itself be the adhesin. The present study indicates, however, that the lack of adhesion by nonmotile vibrios did not depend on motility as such and did not involve greater rates of elution. Increasing the rate of contact between nonmotile vibrio mutants and brush border membranes by compaction did not restore the adhesive properties of the defective strains. Accordingly, we speculate that the flagellum may function in some indirect way that allows the expression of the adhesive properties, such as by acting as a carrier for a specific vibrio adhesin. Adhesion to brush borders and agglutination of human group O erythrocytes was specifically inhibited by L-fucose and various glycosides of L-fucose and to a lesser extent by D-mannose. Vibrios adhered specifically to agarose beads that carried covalently linked L-fucose on their surfaces. The results suggest that L-fucose-containing structures of eukaryotic cell surfaces may function as receptors for the vibrio adhesin and may therefore be an important determinant of host susceptibility.

240

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Freter R., Jones G. W. Adhesive properties of Vibrio cholerae: nature of the interaction with intact mucosal surfaces. Infect Immun. 1976 Jul;14(1):246–256. doi: 10.1128/iai.14.1.246-256.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gibbons R. A., Jones G. W., Sellwood R. An attempt to identify the intestinal receptor for the K88 adhesin by means of a haemagglutination inhibition test using glycoproteins and fractions from sow colostrum. J Gen Microbiol. 1975 Feb;86(2):228–240. doi: 10.1099/00221287-86-2-228. [DOI] [PubMed] [Google Scholar]
  3. Gilboa-Garber N., Mizrahi L., Garber N. Purification of the galactose-binding hemagglutinin of Pseudomonas aeruginosa by affinity column chromatography using sepharose. FEBS Lett. 1972 Nov 15;28(1):93–95. doi: 10.1016/0014-5793(72)80685-9. [DOI] [PubMed] [Google Scholar]
  4. Guentzel M. N., Berry L. J. Motility as a virulence factor for Vibrio cholerae. Infect Immun. 1975 May;11(5):890–897. doi: 10.1128/iai.11.5.890-897.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jones G. W., Abrams G. D., Freter R. Adhesive properties of Vibrio cholerae: adhesion to isolated rabbit brush border membranes and hemagglutinating activity. Infect Immun. 1976 Jul;14(1):232–239. doi: 10.1128/iai.14.1.232-239.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Schrank G. D., Verwey W. F. Distribution of cholera organisms in experimental Vibrio cholerae infections: proposed mechanisms of pathogenesis and antibacterial immunity. Infect Immun. 1976 Jan;13(1):195–203. doi: 10.1128/iai.13.1.195-203.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]