Wing rotation and the aerodynamic basis of insect flight - PubMed (original) (raw)
Wing rotation and the aerodynamic basis of insect flight
M H Dickinson et al. Science. 1999.
Abstract
The enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture. Delayed stall functions during the translational portions of the stroke, when the wings sweep through the air with a large angle of attack. In contrast, rotational circulation and wake capture generate aerodynamic forces during stroke reversals, when the wings rapidly rotate and change direction. In addition to contributing to the lift required to keep an insect aloft, these two rotational mechanisms provide a potent means by which the animal can modulate the direction and magnitude of flight forces during steering maneuvers. A comprehensive theory incorporating both translational and rotational mechanisms may explain the diverse patterns of wing motion displayed by different species of insects.
Comment in
- Unsteady aerodynamics.
Dudley R. Dudley R. Science. 1999 Jun 18;284(5422):1937, 1939. doi: 10.1126/science.284.5422.1937. Science. 1999. PMID: 10400535 No abstract available.
Similar articles
- The mechanisms of lift enhancement in insect flight.
Lehmann FO. Lehmann FO. Naturwissenschaften. 2004 Mar;91(3):101-22. doi: 10.1007/s00114-004-0502-3. Epub 2004 Mar 4. Naturwissenschaften. 2004. PMID: 15034660 Review. - The control of flight force by a flapping wing: lift and drag production.
Sane SP, Dickinson MH. Sane SP, et al. J Exp Biol. 2001 Aug;204(Pt 15):2607-26. doi: 10.1242/jeb.204.15.2607. J Exp Biol. 2001. PMID: 11533111 - The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.
Sane SP, Dickinson MH. Sane SP, et al. J Exp Biol. 2002 Apr;205(Pt 8):1087-96. doi: 10.1242/jeb.205.8.1087. J Exp Biol. 2002. PMID: 11919268 - A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
van Veen WG, van Leeuwen JL, Muijres FT. van Veen WG, et al. J R Soc Interface. 2019 Jun 28;16(155):20190118. doi: 10.1098/rsif.2019.0118. Epub 2019 Jun 19. J R Soc Interface. 2019. PMID: 31213176 Free PMC article. - Unsteady aerodynamics of insect flight.
Ellington CP. Ellington CP. Symp Soc Exp Biol. 1995;49:109-29. Symp Soc Exp Biol. 1995. PMID: 8571220 Review.
Cited by
- Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.
Le TQ, Truong TV, Park SH, Quang Truong T, Ko JH, Park HC, Byun D. Le TQ, et al. J R Soc Interface. 2013 Jun 5;10(85):20130312. doi: 10.1098/rsif.2013.0312. Print 2013 Aug 6. J R Soc Interface. 2013. PMID: 23740486 Free PMC article. - The aerodynamic forces and pressure distribution of a revolving pigeon wing.
Usherwood JR. Usherwood JR. Exp Fluids. 2009 May;46(5):991-1003. doi: 10.1007/s00348-008-0596-z. Exp Fluids. 2009. PMID: 22736891 Free PMC article. - Wing Design in Flies: Properties and Aerodynamic Function.
Krishna S, Cho M, Wehmann HN, Engels T, Lehmann FO. Krishna S, et al. Insects. 2020 Jul 23;11(8):466. doi: 10.3390/insects11080466. Insects. 2020. PMID: 32718051 Free PMC article. Review. - The damping and structural properties of dragonfly and damselfly wings during dynamic movement.
Lietz C, Schaber CF, Gorb SN, Rajabi H. Lietz C, et al. Commun Biol. 2021 Jun 15;4(1):737. doi: 10.1038/s42003-021-02263-2. Commun Biol. 2021. PMID: 34131288 Free PMC article. - Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly.
Klopsch C, Kuhlmann HC, Barth FG. Klopsch C, et al. J R Soc Interface. 2012 Oct 7;9(75):2591-602. doi: 10.1098/rsif.2012.0186. Epub 2012 May 9. J R Soc Interface. 2012. PMID: 22572032 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases