The dominant negative LQT2 mutation A561V reduces wild-type HERG expression - PubMed (original) (raw)
. 2000 Apr 14;275(15):11241-8.
doi: 10.1074/jbc.275.15.11241.
Affiliations
- PMID: 10753933
- DOI: 10.1074/jbc.275.15.11241
Free article
The dominant negative LQT2 mutation A561V reduces wild-type HERG expression
A Kagan et al. J Biol Chem. 2000.
Free article
Abstract
HERG(1) K(+) channel mutations are responsible for one form of dominantly inherited long QT syndrome (LQT). Some LQT mutations exert a dominant negative effect on wild-type current expression. To investigate mechanisms of dominant-negative behavior, we co-expressed wild-type HERG with the A561V mutant in mammalian cells. Transfection with various cDNA ratios produced HERG K(+) current densities that approached a predicted binomial distribution where mutant and wild-type subunits co-assemble in a tetramer with nearly complete dominance. Using C terminus myc-tagged wild-type HERG we specifically followed the mutant's effect on full-length wild-type HERG protein expression. Co-expression with A561V reduced the abundance of full-length wild-type HERG protein comparable to the current reduction. Reduction of wild-type protein was due to decreased synthesis and increased turnover. Conditions facilitating protein folding (growth at 30 degrees C, or in 10% glycerol) resulted in partial rescue from the dominant effect, as did the 26 S proteosome inhibitor ALLN. Thus, for A561V, dominant negative effects result from assembly of wild-type subunits with mutant very early in production leading to rapid recognition of mutant channels and targeting for proteolysis. These results establish protein misfolding, cellular proofreading, and bystander involvement as contributing mechanisms for dominant effects in LQT2.
Similar articles
- Retention in the endoplasmic reticulum as a mechanism of dominant-negative current suppression in human long QT syndrome.
Ficker E, Dennis AT, Obejero-Paz CA, Castaldo P, Taglialatela M, Brown AM. Ficker E, et al. J Mol Cell Cardiol. 2000 Dec;32(12):2327-37. doi: 10.1006/jmcc.2000.1263. J Mol Cell Cardiol. 2000. PMID: 11113008 - Analysis of the cyclic nucleotide binding domain of the HERG potassium channel and interactions with KCNE2.
Cui J, Kagan A, Qin D, Mathew J, Melman YF, McDonald TV. Cui J, et al. J Biol Chem. 2001 May 18;276(20):17244-51. doi: 10.1074/jbc.M010904200. Epub 2001 Feb 26. J Biol Chem. 2001. PMID: 11278781 - Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects.
Zhou Z, Gong Q, January CT. Zhou Z, et al. J Biol Chem. 1999 Oct 29;274(44):31123-6. doi: 10.1074/jbc.274.44.31123. J Biol Chem. 1999. PMID: 10531299 - Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia.
Sanguinetti MC. Sanguinetti MC. Ann N Y Acad Sci. 1999 Apr 30;868:406-13. doi: 10.1111/j.1749-6632.1999.tb11302.x. Ann N Y Acad Sci. 1999. PMID: 10414310 Review. - Long QT syndrome: cellular basis and arrhythmia mechanism in LQT2.
January CT, Gong Q, Zhou Z. January CT, et al. J Cardiovasc Electrophysiol. 2000 Dec;11(12):1413-8. doi: 10.1046/j.1540-8167.2000.01413.x. J Cardiovasc Electrophysiol. 2000. PMID: 11196567 Review.
Cited by
- KCNH2A561V Heterozygous Mutation Inhibits KCNH2 Protein Expression via The Activation of UPR Mediated by ATF6.
Chen B, Tan L, Chen D, Wang X, Liu J, Huang X, Wang Y, Huang S, Mao F, Lian J. Chen B, et al. Physiol Res. 2023 Nov 28;72(5):621-631. doi: 10.33549/physiolres.935095. Physiol Res. 2023. PMID: 38015761 Free PMC article. - Gene- and variant-specific efficacy of serum/glucocorticoid-regulated kinase 1 inhibition in long QT syndrome types 1 and 2.
Giannetti F, Barbieri M, Shiti A, Casini S, Sager PT, Das S, Pradhananga S, Srinivasan D, Nimani S, Alerni N, Louradour J, Mura M, Gnecchi M, Brink P, Zehender M, Koren G, Zaza A, Crotti L, Wilde AAM, Schwartz PJ, Remme CA, Gepstein L, Sala L, Odening KE. Giannetti F, et al. Europace. 2023 May 19;25(5):euad094. doi: 10.1093/europace/euad094. Europace. 2023. PMID: 37099628 Free PMC article. - Modeling long QT syndrome type 2 on-a-chip via in-depth assessment of isogenic gene-edited 3D cardiac tissues.
Veldhuizen J, Mann HF, Karamanova N, Van Horn WD, Migrino RQ, Brafman D, Nikkhah M. Veldhuizen J, et al. Sci Adv. 2022 Dec 16;8(50):eabq6720. doi: 10.1126/sciadv.abq6720. Epub 2022 Dec 16. Sci Adv. 2022. PMID: 36525500 Free PMC article. - Reclassification of a likely pathogenic Dutch founder variant in KCNH2; implications of reduced penetrance.
Copier JS, Bootsma M, Ng CA, Wilde AAM, Bertels RA, Bikker H, Christiaans I, van der Crabben SN, Hol JA, Koopmann TT, Knijnenburg J, Lommerse AAJ, van der Smagt JJ, Bezzina CR, Vandenberg JI, Verkerk AO, Barge-Schaapveld DQCM, Lodder EM. Copier JS, et al. Hum Mol Genet. 2023 Mar 20;32(7):1072-1082. doi: 10.1093/hmg/ddac261. Hum Mol Genet. 2023. PMID: 36269083 Free PMC article. - Deciphering Common Long QT Syndrome Using CRISPR/Cas9 in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
Song Y, Zheng Z, Lian J. Song Y, et al. Front Cardiovasc Med. 2022 May 13;9:889519. doi: 10.3389/fcvm.2022.889519. eCollection 2022. Front Cardiovasc Med. 2022. PMID: 35647048 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases