A coalescent-based method for detecting and estimating recombination from gene sequences - PubMed (original) (raw)
A coalescent-based method for detecting and estimating recombination from gene sequences
Gil McVean et al. Genetics. 2002 Mar.
Abstract
Determining the amount of recombination in the genealogical history of a sample of genes is important to both evolutionary biology and medical population genetics. However, recurrent mutation can produce patterns of genetic diversity similar to those generated by recombination and can bias estimates of the population recombination rate. Hudson 2001 has suggested an approximate-likelihood method based on coalescent theory to estimate the population recombination rate, 4N(e)r, under an infinite-sites model of sequence evolution. Here we extend the method to the estimation of the recombination rate in genomes, such as those of many viruses and bacteria, where the rate of recurrent mutation is high. In addition, we develop a powerful permutation-based method for detecting recombination that is both more powerful than other permutation-based methods and robust to misspecification of the model of sequence evolution. We apply the method to sequence data from viruses, bacteria, and human mitochondrial DNA. The extremely high level of recombination detected in both HIV1 and HIV2 sequences demonstrates that recombination cannot be ignored in the analysis of viral population genetic data.
Similar articles
- The Promise of Inferring the Past Using the Ancestral Recombination Graph.
Brandt DYC, Huber CD, Chiang CWK, Ortega-Del Vecchyo D. Brandt DYC, et al. Genome Biol Evol. 2024 Feb 1;16(2):evae005. doi: 10.1093/gbe/evae005. Genome Biol Evol. 2024. PMID: 38242694 Free PMC article. - Recombination estimation under complex evolutionary models with the coalescent composite-likelihood method.
Carvajal-Rodríguez A, Crandall KA, Posada D. Carvajal-Rodríguez A, et al. Mol Biol Evol. 2006 Apr;23(4):817-27. doi: 10.1093/molbev/msj102. Epub 2006 Feb 1. Mol Biol Evol. 2006. PMID: 16452117 Free PMC article. - Evaluation of methods for detecting recombination from DNA sequences: computer simulations.
Posada D, Crandall KA. Posada D, et al. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13757-62. doi: 10.1073/pnas.241370698. Proc Natl Acad Sci U S A. 2001. PMID: 11717435 Free PMC article. - Analysing recombination in nucleotide sequences.
Martin DP, Lemey P, Posada D. Martin DP, et al. Mol Ecol Resour. 2011 Nov;11(6):943-55. doi: 10.1111/j.1755-0998.2011.03026.x. Epub 2011 May 19. Mol Ecol Resour. 2011. PMID: 21592314 Review. - The evolutionary genomics of pathogen recombination.
Awadalla P. Awadalla P. Nat Rev Genet. 2003 Jan;4(1):50-60. doi: 10.1038/nrg964. Nat Rev Genet. 2003. PMID: 12509753 Review.
Cited by
- Natural selection and recombination at host-interacting lipoprotein loci drive genome diversification of Lyme disease and related bacteria.
Akther S, Mongodin EF, Morgan RD, Di L, Yang X, Golovchenko M, Rudenko N, Margos G, Hepner S, Fingerle V, Kawabata H, Norte AC, de Carvalho IL, Núncio MS, Marques A, Schutzer SE, Fraser CM, Luft BJ, Casjens SR, Qiu W. Akther S, et al. mBio. 2024 Sep 11;15(9):e0174924. doi: 10.1128/mbio.01749-24. Epub 2024 Aug 15. mBio. 2024. PMID: 39145656 Free PMC article. - Exploration of Genome-Wide Recombination Rate Variation Patterns at Different Scales in Pigs.
Chen Z, Zhou M, Sun Y, Tang X, Zhang Z, Huang L. Chen Z, et al. Animals (Basel). 2024 Apr 29;14(9):1345. doi: 10.3390/ani14091345. Animals (Basel). 2024. PMID: 38731349 Free PMC article. - The hazards of genotype imputation when mapping disease susceptibility variants.
Lau W, Ali A, Maude H, Andrew T, Swallow DM, Maniatis N. Lau W, et al. Genome Biol. 2024 Jan 3;25(1):7. doi: 10.1186/s13059-023-03140-3. Genome Biol. 2024. PMID: 38172955 Free PMC article. - Allele surfing causes maladaptation in a Pacific salmon of conservation concern.
Rougemont Q, Leroy T, Rondeau EB, Koop B, Bernatchez L. Rougemont Q, et al. PLoS Genet. 2023 Sep 8;19(9):e1010918. doi: 10.1371/journal.pgen.1010918. eCollection 2023 Sep. PLoS Genet. 2023. PMID: 37683018 Free PMC article. - Subtle Introgression Footprints at the End of the Speciation Continuum in a Clade of Heliconius Butterflies.
Rougemont Q, Huber B, Martin SH, Whibley A, Estrada C, Solano D, Orpet R, McMillan WO, Frérot B, Joron M. Rougemont Q, et al. Mol Biol Evol. 2023 Jul 5;40(7):msad166. doi: 10.1093/molbev/msad166. Mol Biol Evol. 2023. PMID: 37467472 Free PMC article.
References
- J Comput Biol. 2000 Feb-Apr;7(1-2):159-70 - PubMed
- Am J Hum Genet. 2001 Jul;69(1):1-14 - PubMed
- J Comput Biol. 1996 Winter;3(4):479-502 - PubMed
- Genetics. 1998 Mar;148(3):929-36 - PubMed
- Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384-8 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources