Expression and function of toll like receptors in chronic lymphocytic leukaemia cells - PubMed (original) (raw)
. 2009 Feb;144(4):507-16.
doi: 10.1111/j.1365-2141.2008.07475.x. Epub 2008 Nov 19.
Affiliations
- PMID: 19036098
- DOI: 10.1111/j.1365-2141.2008.07475.x
Free article
Expression and function of toll like receptors in chronic lymphocytic leukaemia cells
Marta Muzio et al. Br J Haematol. 2009 Feb.
Free article
Abstract
Mature B-cells can recognize microbial antigens via B-cell-receptor (BCR) in a specific way and via Toll-like receptors (TLR) in a costimulatory manner. A wealth of information is gathering on the possible role of antigenic stimulation in the natural history of Chronic Lymphocytic Leukaemia (CLL). However little is known regarding the repertoire and function of TLR in CLL cells. The TLR family includes 10 different transmembrane proteins devoted to recognize specific pathogen-associated molecular patterns and to alarm immunocompetent cells to trigger an immune response. Here, we studied fresh leukaemic cells for the expression pattern of TLR1 to TLR10, NOD1, NOD2 and SIGIRR (also known as TIR8). CLL cells were found to express several pattern recognition receptors including TLR1, TLR2, TLR6, TLR10, NOD1 and NOD2. The specific TLR expressed by CLL cells were functional. Leukaemic cells, upon stimulation with TLR1/2/6 ligands, such as bacterial lipopeptides, activated the nuclear factor-kappaB signalling pathway, expressed CD86 and CD25 activation molecules, and were protected from spontaneous apoptosis. These findings further support the hypothesis that CLL cells resemble antigen-activated B-cells and suggest a potential role of TLR in modulating CLL cell response in the context of specific antigen recognition.
Similar articles
- Expression and function of toll-like receptors in multiple myeloma patients: toll-like receptor ligands promote multiple myeloma cell growth and survival via activation of nuclear factor-kappaB.
Xu Y, Zhao Y, Huang H, Chen G, Wu X, Wang Y, Chang W, Zhu Z, Feng Y, Wu D. Xu Y, et al. Br J Haematol. 2010 Sep;150(5):543-53. doi: 10.1111/j.1365-2141.2010.08284.x. Epub 2010 Jul 14. Br J Haematol. 2010. PMID: 20629663 - Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture.
Uehara A, Yang S, Fujimoto Y, Fukase K, Kusumoto S, Shibata K, Sugawara S, Takada H. Uehara A, et al. Cell Microbiol. 2005 Jan;7(1):53-61. doi: 10.1111/j.1462-5822.2004.00433.x. Cell Microbiol. 2005. PMID: 15617523 - Effects of NOD-like receptors in human B lymphocytes and crosstalk between NOD1/NOD2 and Toll-like receptors.
Petterson T, Jendholm J, Månsson A, Bjartell A, Riesbeck K, Cardell LO. Petterson T, et al. J Leukoc Biol. 2011 Feb;89(2):177-87. doi: 10.1189/jlb.0210061. Epub 2010 Sep 15. J Leukoc Biol. 2011. PMID: 20844241 - Nod1 and Nod2 in innate immunity and human inflammatory disorders.
Le Bourhis L, Benko S, Girardin SE. Le Bourhis L, et al. Biochem Soc Trans. 2007 Dec;35(Pt 6):1479-84. doi: 10.1042/BST0351479. Biochem Soc Trans. 2007. PMID: 18031249 Review. - Microenvironmental influences in chronic lymphocytic leukaemia: the role of antigen stimulation.
Ghia P, Chiorazzi N, Stamatopoulos K. Ghia P, et al. J Intern Med. 2008 Dec;264(6):549-62. doi: 10.1111/j.1365-2796.2008.02030.x. J Intern Med. 2008. PMID: 19017179 Review.
Cited by
- Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy.
Herman SE, Sun X, McAuley EM, Hsieh MM, Pittaluga S, Raffeld M, Liu D, Keyvanfar K, Chapman CM, Chen J, Buggy JJ, Aue G, Tisdale JF, Pérez-Galán P, Wiestner A. Herman SE, et al. Leukemia. 2013 Dec;27(12):2311-21. doi: 10.1038/leu.2013.131. Epub 2013 Apr 26. Leukemia. 2013. PMID: 23619564 Free PMC article. - NOD2 mutations affect muramyl dipeptide stimulation of human B lymphocytes and interact with other IBD-associated genes.
Lin Z, Hegarty JP, John G, Berg A, Wang Z, Sehgal R, Pastor DM, Wang Y, Harris LR 3rd, Poritz LS, Schreiber S, Koltun WA. Lin Z, et al. Dig Dis Sci. 2013 Sep;58(9):2599-607. doi: 10.1007/s10620-013-2696-8. Epub 2013 May 26. Dig Dis Sci. 2013. PMID: 23709157 - Identification of novel lncRNAs involved in the pathogenesis of childhood acute lymphoblastic leukemia.
Li S, Bian H, Cao Y, Juan C, Cao Q, Zhou G, Fang Y. Li S, et al. Oncol Lett. 2019 Feb;17(2):2081-2090. doi: 10.3892/ol.2018.9832. Epub 2018 Dec 14. Oncol Lett. 2019. PMID: 30675275 Free PMC article. - TLR9 Ligand (CpG Oligodeoxynucleotide) Induces CLL B-Cells to Differentiate into CD20(+) Antibody-Secreting Cells.
Ghamlouch H, Ouled-Haddou H, Guyart A, Regnier A, Trudel S, Claisse JF, Fuentes V, Royer B, Marolleau JP, Gubler B. Ghamlouch H, et al. Front Immunol. 2014 Jun 16;5:292. doi: 10.3389/fimmu.2014.00292. eCollection 2014. Front Immunol. 2014. PMID: 24982661 Free PMC article. - Mechanistic Insights into CpG DNA and IL-15 Synergy in Promoting B Cell Chronic Lymphocytic Leukemia Clonal Expansion.
Gupta R, Yan XJ, Barrientos J, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. Gupta R, et al. J Immunol. 2018 Sep 1;201(5):1570-1585. doi: 10.4049/jimmunol.1800591. Epub 2018 Aug 1. J Immunol. 2018. PMID: 30068596 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources