Antifungal activity of sodium bicarbonate against fungal agents causing superficial infections - PubMed (original) (raw)
. 2013 Feb;175(1-2):153-8.
doi: 10.1007/s11046-012-9583-2. Epub 2012 Sep 19.
Affiliations
- PMID: 22991095
- DOI: 10.1007/s11046-012-9583-2
Antifungal activity of sodium bicarbonate against fungal agents causing superficial infections
V Letscher-Bru et al. Mycopathologia. 2013 Feb.
Abstract
Although sodium bicarbonate-NaHCO(3) (SB) has many domestic and medical, traditional and empirical uses, only little scientific documentation of its activity is available. The aims of this study were to investigate the antifungal activity of SB on the three fungal groups (yeasts, dermatophytes and molds) responsible for human skin and nail infections. We first evaluated the in vitro antifungal activity of SB on 70 fungal strains isolated from skin and nail infections: 40 dermatophytes, 18 yeasts and 12 molds. A concentration of 10 g/L SB inhibited the growth of 80% of all the fungal isolates tested on Sabouraud dextrose agar. The minimal inhibitory concentration 90 (MIC90) of SB measured on Sabouraud dextrose agar, Sabouraud dextrose broth and potato dextrose broth was 5 g/L for the yeasts, 20 g/L for the dermatophytes and 40 g/L for the molds. In a second step, we prospectively evaluated the ex vivo antifungal activity of SB on 24 infected (15 dermatophytes, 7 yeasts and 2 molds) clinical specimens (15 nails and 9 skin scrapings). The fungal growth was completely inhibited for 19 (79%) specimens and reduced for 4 (17%) specimens after 7 days of incubation on Sabouraud dextrose-chloramphenicol agar supplemented with 10 g/L of SB as compared to Sabouraud dextrose-chloramphenicol agar without SB. In conclusion, we documented the antifungal activity of SB on the most common agents of cutaneous fungal infection and onychomycosis, and we specified the effective concentrations for the different groups of pathogenic fungi. The mechanism of action of SB has yet to be explored.
Similar articles
- Antifungal susceptibility patterns of yeasts and filamentous fungi isolated from nail infection.
Ataides FS, Chaul MH, El Essal FE, Costa CR, Souza LK, Fernandes OF, Silva MR. Ataides FS, et al. J Eur Acad Dermatol Venereol. 2012 Dec;26(12):1479-85. doi: 10.1111/j.1468-3083.2011.04315.x. Epub 2011 Nov 3. J Eur Acad Dermatol Venereol. 2012. PMID: 22049990 - Low In Vitro Antifungal Activity of Tavaborole against Yeasts and Molds from Onychomycosis.
Abastabar M, Haghani I, Shokohi T, Hedayati MT, Aghili SR, Jedi A, Dadashi S, Shabanzadeh S, Hosseini T, Aslani N, Meis JF, Badali H. Abastabar M, et al. Antimicrob Agents Chemother. 2018 Nov 26;62(12):e01632-18. doi: 10.1128/AAC.01632-18. Print 2018 Dec. Antimicrob Agents Chemother. 2018. PMID: 30224524 Free PMC article. - Identification and antifungal susceptibility of fungi isolated from dermatomycoses.
Silva LB, de Oliveira DB, da Silva BV, de Souza RA, da Silva PR, Ferreira-Paim K, Andrade-Silva LE, Silva-Vergara ML, Andrade AA. Silva LB, et al. J Eur Acad Dermatol Venereol. 2014 May;28(5):633-40. doi: 10.1111/jdv.12151. Epub 2013 Apr 5. J Eur Acad Dermatol Venereol. 2014. PMID: 23556501 - Non-dermatophyte fungi in onychomycosis-Epidemiology and consequences for clinical practice.
Reinel D. Reinel D. Mycoses. 2021 Jul;64(7):694-700. doi: 10.1111/myc.13251. Epub 2021 Feb 12. Mycoses. 2021. PMID: 33539562 Review. - Evidence for biofilms in onychomycosis.
Gupta AK, Foley KA. Gupta AK, et al. G Ital Dermatol Venereol. 2019 Feb;154(1):50-55. doi: 10.23736/S0392-0488.18.06001-7. Epub 2018 Apr 19. G Ital Dermatol Venereol. 2019. PMID: 29683287 Review.
Cited by
- Local Administration of Sodium Bicarbonate for Preventing COVID-19 Associated Mucormycosis.
Pourdowlat G, Pourabdollah M, Sharifynia S, Saghafi F. Pourdowlat G, et al. Tanaffos. 2023 Mar;22(3):337-340. Tanaffos. 2023. PMID: 38638394 Free PMC article. - Synergistic in vitro activity of sodium houttuyfonate with fluconazole against clinical Candida albicans strains under planktonic growing conditions.
Shao J, Cui Y, Zhang M, Wang T, Wu D, Wang C. Shao J, et al. Pharm Biol. 2017 Dec;55(1):355-359. doi: 10.1080/13880209.2016.1237977. Pharm Biol. 2017. PMID: 27931143 Free PMC article. - The Effects of Carbonate on Candida albicans Filamentation, Biofilm Formation, and Antifungal Resistance.
Miedema TP, Grooters KE, Cleary IA. Miedema TP, et al. Microbiologyopen. 2024 Dec;13(6):e70008. doi: 10.1002/mbo3.70008. Microbiologyopen. 2024. PMID: 39535494 Free PMC article. - Strong Synergism of Palmatine and Fluconazole/Itraconazole Against Planktonic and Biofilm Cells of Candida Species and Efflux-Associated Antifungal Mechanism.
Wang T, Shao J, Da W, Li Q, Shi G, Wu D, Wang C. Wang T, et al. Front Microbiol. 2018 Dec 3;9:2892. doi: 10.3389/fmicb.2018.02892. eCollection 2018. Front Microbiol. 2018. PMID: 30559726 Free PMC article. - Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy.
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Mercer DK, et al. Front Cell Infect Microbiol. 2020 Jul 7;10:326. doi: 10.3389/fcimb.2020.00326. eCollection 2020. Front Cell Infect Microbiol. 2020. PMID: 32733816 Free PMC article. Review.
References
- FEMS Microbiol Lett. 2009 Nov;300(2):216-21 - PubMed
- Med Mycol. 2005 Jun;43(4):319-25 - PubMed
- AIDS Patient Care STDS. 2008 Aug;22(8):613-8 - PubMed
- J Agric Food Chem. 2008 Nov 26;56(22):10793-8 - PubMed
- Microbiology (Reading). 1998 Oct;144 ( Pt 10):2749-2758 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical