The evolutionary development of modifier genes - PubMed (original) (raw)
The evolutionary development of modifier genes
S Karlin et al. Proc Natl Acad Sci U S A. 1972 Dec.
Abstract
The main findings of a study of the evolution of modifier gene frequencies in models of deterministic population genetics are presented. A wide variety of random mating systems are subject to selection with modifiers operating, in different cases, on mutation rates, dominance, migration between subpopulations, and linkage between other loci. In all these instances the modifier frequencies evolve in such a way as to maximize the mean fitness of the population at equilibrium. This is remarkable since, except for the dominance modifier, the modifier genes are selectively neutral in the sense that they do not affect the fitness of their individual carriers. In nonrandom mating systems the mean fitness concept is not well defined, and there does not appear to be such a simple principle governing the evolution of modifier frequencies. In assortative mating systems modifiers favoring reduced assortment propensities tend to increase. In contrast, for selfing-outcrossing systems modifiers favoring increased selfing tend to increase.
Similar articles
- The effect of linkage and population size on inbreeding depression due to mutational load.
Charlesworth D, Morgan MT, Charlesworth B. Charlesworth D, et al. Genet Res. 1992 Feb;59(1):49-61. doi: 10.1017/s0016672300030160. Genet Res. 1992. PMID: 1572536 - The genetic basis of selfing rate evolution.
Xu K. Xu K. Evolution. 2022 May;76(5):883-898. doi: 10.1111/evo.14480. Epub 2022 Apr 16. Evolution. 2022. PMID: 35395695 - Selection, generalized transmission and the evolution of modifier genes. I. The reduction principle.
Altenberg L, Feldman MW. Altenberg L, et al. Genetics. 1987 Nov;117(3):559-72. doi: 10.1093/genetics/117.3.559. Genetics. 1987. PMID: 3692141 Free PMC article. - Population genetic perspectives on the evolution of recombination.
Feldman MW, Otto SP, Christiansen FB. Feldman MW, et al. Annu Rev Genet. 1996;30:261-95. doi: 10.1146/annurev.genet.30.1.261. Annu Rev Genet. 1996. PMID: 8982456 Review. - Population studies and the measurement of natural selection, with special reference to the HL-A system.
Bodmer WF. Bodmer WF. Isr J Med Sci. 1973 Sep-Oct;9(9):1503-18. Isr J Med Sci. 1973. PMID: 4590459 Review. No abstract available.
Cited by
- The evolution of phenotypic switching in subdivided populations.
Carja O, Liberman U, Feldman MW. Carja O, et al. Genetics. 2014 Apr;196(4):1185-97. doi: 10.1534/genetics.114.161364. Epub 2014 Feb 4. Genetics. 2014. PMID: 24496012 Free PMC article. - ENCODE: A Sourcebook of Epigenomes and Chromatin Language.
Yavartanoo M, Choi JK. Yavartanoo M, et al. Genomics Inform. 2013 Mar;11(1):2-6. doi: 10.5808/GI.2013.11.1.2. Epub 2013 Mar 31. Genomics Inform. 2013. PMID: 23613676 Free PMC article. - Resolvent positive linear operators exhibit the reduction phenomenon.
Altenberg L. Altenberg L. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3705-10. doi: 10.1073/pnas.1113833109. Epub 2012 Feb 22. Proc Natl Acad Sci U S A. 2012. PMID: 22357763 Free PMC article. - On the evolution of mutation in changing environments: recombination and phenotypic switching.
Liberman U, Van Cleve J, Feldman MW. Liberman U, et al. Genetics. 2011 Mar;187(3):837-51. doi: 10.1534/genetics.110.123620. Epub 2011 Jan 6. Genetics. 2011. PMID: 21212229 Free PMC article. - A mixability theory for the role of sex in evolution.
Livnat A, Papadimitriou C, Dushoff J, Feldman MW. Livnat A, et al. Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19803-8. doi: 10.1073/pnas.0803596105. Epub 2008 Dec 10. Proc Natl Acad Sci U S A. 2008. PMID: 19073912 Free PMC article.
References
- Genetics. 1967 Nov;57(3):625-41 - PubMed
- Genetics. 1969 Nov;63(3):681-99 - PubMed
- Theor Popul Biol. 1972 Sep;3(3):324-46 - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources