Crystal structure of yeast tRNAAsp - PubMed (original) (raw)
. 1980 Dec 25;288(5792):669-74.
doi: 10.1038/288669a0.
- PMID: 7005687
- DOI: 10.1038/288669a0
Crystal structure of yeast tRNAAsp
D Moras et al. Nature. 1980.
Abstract
Two independent, three-dimensional structures of yeast tRNAAsp, mainly differing by the conformation of the D loop, have been obtained from a multiple isomorphous replacement (MIR) X-ray analysis at 3.5-A resolution. The folding of the ribose-phosphate backbone is similar to that found for tRNAPhe; major differences concern the relative positioning of the acceptor and anticodon stems, and the conformation of the loops in the two molecules. Crystal packing involves self-complementary GUC anticodon interactions.
Similar articles
- Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition.
Moras D, Dock AC, Dumas P, Westhof E, Romby P, Ebel JP, Giegé R. Moras D, et al. Proc Natl Acad Sci U S A. 1986 Feb;83(4):932-6. doi: 10.1073/pnas.83.4.932. Proc Natl Acad Sci U S A. 1986. PMID: 3513167 Free PMC article. - Crystallographic refinement of yeast aspartic acid transfer RNA.
Westhof E, Dumas P, Moras D. Westhof E, et al. J Mol Biol. 1985 Jul 5;184(1):119-45. doi: 10.1016/0022-2836(85)90048-8. J Mol Biol. 1985. PMID: 3897553 - Transfer RNA: molecular structure, sequence, and properties.
Rich A, RajBhandary UL. Rich A, et al. Annu Rev Biochem. 1976;45:805-60. doi: 10.1146/annurev.bi.45.070176.004105. Annu Rev Biochem. 1976. PMID: 60910 Review. No abstract available. - Three-dimensional structure of transfer RNA.
Kim SH. Kim SH. Prog Nucleic Acid Res Mol Biol. 1976;17:181-216. doi: 10.1016/s0079-6603(08)60070-7. Prog Nucleic Acid Res Mol Biol. 1976. PMID: 778921 Review. No abstract available.
Cited by
- Solution structure of psi32-modified anticodon stem-loop of Escherichia coli tRNAPhe.
Cabello-Villegas J, Nikonowicz EP. Cabello-Villegas J, et al. Nucleic Acids Res. 2005 Dec 23;33(22):6961-71. doi: 10.1093/nar/gki1004. Print 2005. Nucleic Acids Res. 2005. PMID: 16377777 Free PMC article. - Extensive profiling of the expressions of tRNAs and tRNA-derived fragments (tRFs) reveals the complexities of tRNA and tRF populations in plants.
Ma X, Liu C, Kong X, Liu J, Zhang S, Liang S, Luan W, Cao X. Ma X, et al. Sci China Life Sci. 2021 Apr;64(4):495-511. doi: 10.1007/s11427-020-1891-8. Epub 2021 Feb 8. Sci China Life Sci. 2021. PMID: 33569675 - RNA recognition by designed peptide fusion creates "artificial" tRNA synthetase.
Frugier M, Giege R, Schimmel P. Frugier M, et al. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7471-5. doi: 10.1073/pnas.1332771100. Epub 2003 Jun 9. Proc Natl Acad Sci U S A. 2003. PMID: 12796515 Free PMC article. - Structure of a mispaired RNA double helix at 1.6-A resolution and implications for the prediction of RNA secondary structure.
Cruse WB, Saludjian P, Biala E, Strazewski P, Prangé T, Kennard O. Cruse WB, et al. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4160-4. doi: 10.1073/pnas.91.10.4160. Proc Natl Acad Sci U S A. 1994. PMID: 7514296 Free PMC article. - Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA.
Harris ME, Nolan JM, Malhotra A, Brown JW, Harvey SC, Pace NR. Harris ME, et al. EMBO J. 1994 Sep 1;13(17):3953-63. doi: 10.1002/j.1460-2075.1994.tb06711.x. EMBO J. 1994. PMID: 7521297 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources