C++ Mathematical Expression Library (ExprTk) (original) (raw)

Description

The C++ Mathematical Expression Toolkit Library (ExprTk) is a versatile, simple to use, easy to integrate and extremely efficient runtime mathematical expression parser and evaluation engine. ExprTk supports numerous forms of functional, logical and vector processing semantics and is very easily extendible.

Capabilities

The ExprTk library has the following capabilities:



Sections


C++ Mathematical Expression Library License

MIT License Free use of the C++ Mathematical Expression Library is permitted under the guidelines and in accordance with the Open Source MIT License.

Compatibility

The C++ Mathematical Expression Library implementation is compatible with the following C++ compilers:

Downloads

ExprTk Packages

Conan ExprTk Package Bazel ExprTk Package Spack ExprTk Package Repology ExprTk Package Ubuntu ExprTk Package Archlinux ExprTk Package Debian ExprTk Package Solus ExprTk Package vcpkg ExprTk Package Nuget ExprTk Package XMake ExprTk Package Anaconda ExprTk Package NixOS ExprTk Package FreshPots ExprTk Package OpenPorts ExprTk Package

ExprTk REPL (Read�Evaluate�Print Loop) Binaries:



Example Expressions

The C++ Mathematical Expression Library Example - ExprTk - Copyright Arash Partow



Basic Design

When compiling and subsequently evaluating an expression with ExprTk, the following three fundamental components will be encountered:

Component Purpose / Details
exprtk::symbol_table Holder of external variables, vectors, strings, constants and user defined functions
exprtk::parser Expression factory
exprtk::expression Holder of the AST which is used to evaluate the compiled expression

Note: NumericType can be any floating point type. This includes but is not limited to: float, double, long double, MPFR or any custom type conforming to an interface compatible with the standard floating point type.

The following diagram depicts each of the above denoted components and how they relate to one another when compiling and evaluating the expression: z := x - (3 * y)

ExprTk Design Diagram - Copyright Arash Partow

The following example illustrates the events shown in the diagram above. Given an expression string 'z := x - (3 * y)' and three variables_(x, y and z)_, a exprtk::symbol_table is instantiated and the variables are added to it. Then an exprtk::expression is instantiated and the symbol table is registered with the expression instance. Finally an exprtk::parser is instantiated where both the expression object and the string form of the expression are passed to thecompile method of the parser.

If the compilation process is successful the expression instance will now be holding an AST that can be used to evaluate the original expression. Otherwise a compilation error will be raised and diagnostics relating to the error(s) made available via the parser's error reporting interface. The expression in the example will perform a calculation using the variables x and y then proceed to assign the result of the calculation to the variable z.

typedef double T; // numeric type (float, double, mpfr etc...)

typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string expression_string = "z := x - (3 * y)";

T x = T(123.456); T y = T(98.98); T z = T(0.0);

symbol_table_t symbol_table; symbol_table.add_variable("x",x); symbol_table.add_variable("y",y); symbol_table.add_variable("z",z);

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser;

if (!parser.compile(expression_string,expression)) { printf("Compilation error...\n"); return; }

T result = expression.value(); ....

The expression is evaluated by traversing the generated AST in a_postorder_ manner. The order of sub-expression evaluations will be as follows:

  1. Result0 <- (3 * y)
  2. z <- (x - Result0)

For a more detailed discussion on the internals of ExprTk and its capabilities it is recommended to have a review of the accompanying:readme.txt



Simple ExprTk Examples

Renaissance Technologies - Rentec https://www.rentec.com

TGS Management Company - TGS https://www.tgsmc.com

Simple Example 1 - Simple Expression Using A Single Variable With Multiple Revaluations

The following is an example where a given single variable function is evaluated within the domain: [-5, +5].

The C++ Mathematical Expression Library Function - ExprTk - Copyright Arash Partow

The graph below shows the clamped**_(red)** and non-clamped**(blue)_** versions of the specified function.
The example further demonstrates the common use-case of ExprTk: which is to compile an expression only once, and to then evaluate the compiled expression many times over, and where between each evaluation the expression's dependent variables (eg: x variable) are updated as needed. [source: simple_example_01.cpp]

template void trig_function() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string expression_string = "clamp(-1.0, sin(2 * pi * x) + cos(x / 2 * pi), +1.0)";

T x;

symbol_table_t symbol_table; symbol_table.add_variable("x",x); symbol_table.add_constants();

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(expression_string,expression);

for (x = T(-5); x <= T(+5); x += T(0.001)) { const T y = expression.value(); printf("%19.15f\t%19.15f\n", x, y); } }

The C++ Mathematical Expression Library Graph - ExprTk - Copyright Arash Partow



Simple Example 2 - Square-Wave Form Approximation Using Fourier Series

The following example generates a square wave form based on Fourier series accumulations - 14 harmonics. Sigma-approximation is not applied hence Gibbs phenomenon based ringing is observed on the edges of the square, as is demonstrated in the graph below. [source: simple_example_02.cpp]

template void square_wave() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string expression_string = "a *(4 / pi) * " "((1 /1) * sin( 2 * pi * f * t) + (1 /3) * sin( 6 * pi * f * t)+" " (1 /5) * sin(10 * pi * f * t) + (1 /7) * sin(14 * pi * f * t)+" " (1 /9) * sin(18 * pi * f * t) + (1/11) * sin(22 * pi * f * t)+" " (1/13) * sin(26 * pi * f * t) + (1/15) * sin(30 * pi * f * t)+" " (1/17) * sin(34 * pi * f * t) + (1/19) * sin(38 * pi * f * t)+" " (1/21) * sin(42 * pi * f * t) + (1/23) * sin(46 * pi * f * t)+" " (1/25) * sin(50 * pi * f * t) + (1/27) * sin(54 * pi * f * t))";

static const T pi = T(3.141592653589793238462643383279502);

const T f = pi / T(10); const T a = T(10); T t = T(0);

symbol_table_t symbol_table; symbol_table.add_variable("t",t); symbol_table.add_constant("f",f); symbol_table.add_constant("a",a); symbol_table.add_constants();

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(expression_string,expression);

const T delta = (T(4) * pi) / T(1000);

for (t = (T(-2) * pi); t <= (T(+2) * pi); t += delta) { const T result = expression.value(); printf("%19.15f\t%19.15f\n", t, result); } }

The C++ Mathematical Expression Library Sqaure Wave Graph - Copyright Arash Partow



Simple Example 3 - Polynomial Evaluation With Implied Multiplications

The following example evaluates a 5th degree polynomial within the domain [0,1] with a step size of 1/100th. An interesting side note in the expression is how the multiplication of the coefficients to the variable 'x' are implied rather than explicitly defined using the multiplication operator '*' [source: simple_example_03.cpp]

template void polynomial() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string expression_string = "25x^5 - 35x^4 - 15x^3 + 40x^2 - 15x + 1";

const T r0 = T(0); const T r1 = T(1); T x = T(0);

symbol_table_t symbol_table; symbol_table.add_variable("x",x);

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(expression_string,expression);

const T delta = T(1.0 / 100.0);

for (x = r0; x <= r1; x += delta) { printf("%19.15f\t%19.15f\n", x, expression.value()); } }

The C++ Mathematical Expression Library Polynomial Graph - ExprTk - Copyright Arash Partow



Simple Example 4 - Fibonacci Sequence Via Function Compositor

The following example generates the first 40 Fibonacci numbers using a simple iterative method. The example demonstrates the use of multiple assignment and sequence points, switch statements, while-loops and composited functions with expression local variables. [source: simple_example_04.cpp]

template void fibonacci() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t; typedef exprtk::function_compositor compositor_t; typedef typename compositor_t::function function_t;

T x = T(0);

compositor_t compositor;

compositor.add( function_t("fibonacci") .var("x") .expression ( " switch " " { " " case x == 0 : 0; " " case x == 1 : 1; " " default : " " { " " var prev := 0; " " var curr := 1; " " while ((x -= 1) > 0) " " { " " var temp := prev; " " prev := curr; " " curr += temp; " " }; " " }; " " } " ));

symbol_table_t& symbol_table = compositor.symbol_table(); symbol_table.add_constants(); symbol_table.add_variable("x",x);

std::string expression_str = "fibonacci(x)";

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(expression_str,expression);

for (std::size_t i = 0; i < 40; ++i) { x = static_cast(i);

  const T result = expression.value();

  printf("fibonacci(%3d) = %10.0f\n",
         static_cast<int>(i),
         result);

} }


Simple Example 5 - User Defined Function And Expression Evaluation

The following example demonstrates how one can easily register a custom user defined function to be used within expression evaluations. In this example one of the custom functions myfunc takes two parameters as input and returns a result, the other being a free function named myotherfunc which takes three values as input and returns a result. Furthermore the_'myfunc'_ function explicitly enables itself for constant-folding optimisations by indicating it is stateless and has no external side-effects. The upper limit for individual parameters is 20 inputs. If more inputs are required then either the ivararg_function or igeneric_function interfaces can be used, both of which support an unlimited number of input parameters. [source: simple_example_05.cpp]

template struct myfunc final : public exprtk::ifunction { myfunc() : exprtk::ifunction(2) { exprtk::disable_has_side_effects(*this); }

inline T operator()(const T& v1, const T& v2) override { return T(1) + (v1 * v2) / T(3); } };

template inline T myotherfunc(T v0, T v1, T v2) { return std::abs(v0 - v1) * v2; }

template void custom_function() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string expression_string = "myfunc(sin(x / pi), otherfunc(3 * y, x / 2, x * y))";

T x = T(1); T y = T(2);

myfunc mf;

symbol_table_t symbol_table; symbol_table.add_variable("x",x); symbol_table.add_variable("y",y); symbol_table.add_function("myfunc",mf); symbol_table.add_function("otherfunc",myotherfunc); symbol_table.add_constants();

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(expression_string,expression);

T result = expression.value(); printf("Result: %10.5f\n",result); }


Simple Example 6 - Vector Processing Via For-Loop

The following example demonstrates how one can evaluate an expression over multiple vectors. The example evaluates the value of an expression at the ith element of vectors x and y and assigns the value to the ith value of vector z. The example demonstrates the use of vector indexing, the vector 'size' operator and for loops. [source: simple_example_06.cpp]

template void vector_function() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string expression_string = " for (var i := 0; i < min(x[], y[], z[]); i += 1) " " { " " z[i] := 3sin(x[i]) + 2log(y[i]); " " } ";

T x[] = { T(1.1), T(2.2), T(3.3), T(4.4), T(5.5) }; T y[] = { T(1.1), T(2.2), T(3.3), T(4.4), T(5.5) }; T z[] = { T(0.0), T(0.0), T(0.0), T(0.0), T(0.0) };

symbol_table_t symbol_table; symbol_table.add_vector("x",x); symbol_table.add_vector("y",y); symbol_table.add_vector("z",z);

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(expression_string,expression);

expression.value(); }


Simple Example 7 - Truth Table Generation

The following example demonstrates how one can create and later on reference variables via the symbol_table. In the example a simple boolean expression is evaluated so as to determine its truth-table. [source: simple_example_07.cpp]

template void logic() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string expression_string = "not(A and B) or C";

symbol_table_t symbol_table; symbol_table.create_variable("A"); symbol_table.create_variable("B"); symbol_table.create_variable("C");

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(expression_string,expression);

printf(" # | A | B | C | %s\n" "---+---+---+---+-%s\n", expression_string.c_str(), std::string(expression_string.size(),'-').c_str());

for (int i = 0; i < 8; ++i) { symbol_table.get_variable("A")->ref() = T(i & 0x01 ? 1 : 0); symbol_table.get_variable("B")->ref() = T(i & 0x02 ? 1 : 0); symbol_table.get_variable("C")->ref() = T(i & 0x04 ? 1 : 0);

  const int result = static_cast<int>(expression.value());

  printf(" %d | %d | %d | %d | %d \n",
         i,
         static_cast<int>(symbol_table.get_variable("A")->value()),
         static_cast<int>(symbol_table.get_variable("B")->value()),
         static_cast<int>(symbol_table.get_variable("C")->value()),
         result);

} }

Expected output:

| A | B | C | not(A and B) or C

---+---+---+---+------------------ 0 | 0 | 0 | 0 | 1 1 | 1 | 0 | 0 | 1 2 | 0 | 1 | 0 | 1 3 | 1 | 1 | 0 | 0 4 | 0 | 0 | 1 | 1 5 | 1 | 0 | 1 | 1 6 | 0 | 1 | 1 | 1 7 | 1 | 1 | 1 | 1



Simple Example 8 - Function Of Function Evaluation Via Compositor

The following example demonstrates the function composition capabilities within ExprTk. In the example there are two simple functions defined, an f(x) and a multivariate_g(x,y)_. The function g(x,y) is composed of calls to f(x), the culmination of which is a final expression composed from both functions. Furthermore the example demonstrates how one can extract all errors that were encountered during a failed compilation process. [source: simple_example_08.cpp]

template void composite() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t; typedef exprtk::parser_error::type err_t; typedef exprtk::function_compositor compositor_t; typedef typename compositor_t::function function_t;

T x = T(1); T y = T(2);

compositor_t compositor;

symbol_table_t& symbol_table = compositor.symbol_table(); symbol_table.add_constants(); symbol_table.add_variable("x",x); symbol_table.add_variable("y",y);

compositor.add( function_t("f") // f(x) = sin(x / pi) .var("x") .expression( "sin(x / pi)" ));

compositor.add( function_t("g") // g(x,y) = 3[f(x) + f(y)] .vars("x", "y") .expression( "3*[f(x) + f(y)]" ));

std::string expression_string = "g(1 + f(x), f(y) / 2)";

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser;

if (!parser.compile(expression_string,expression)) { printf("Error: %s\tExpression: %s\n", parser.error().c_str(), expression_string.c_str());

  for (std::size_t i = 0; i < parser.error_count(); ++i)
  {
     const err_t error = parser.get_error(i);

     printf("Error: %02d  Position: %02d Type: [%14s] Msg: %s\tExpression: %s\n",
            static_cast<unsigned int>(i),
            static_cast<unsigned int>(error.token.position),
            exprtk::parser_error::to_str(error.mode).c_str(),
            error.diagnostic.c_str(),
            expression_string.c_str());
  }

  return;

}

const T result = expression.value();

printf("%s = %e\n", expression_string.c_str(), result); }


Simple Example 9 - Prime Numbers Using Various Methods

The following example demonstrates the computation of prime numbers via a mixture of recursive composited functions, switch-statement, for-loop and vector processing functionalities. [source: simple_example_09.cpp]

template void primes() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t; typedef exprtk::function_compositor compositor_t; typedef typename compositor_t::function function_t;

T x = T(0);

symbol_table_t symbol_table;

symbol_table.add_constants(); symbol_table.add_variable("x",x);

compositor_t compositor(symbol_table);

//Mode 1 - if statement based compositor.add( function_t("is_prime_impl1") .vars("x", "y") .expression ( " if (y == 1,true, " " if (0 == (x % y),false, " " is_prime_impl1(x,y - 1))) " ));

compositor.add( function_t("is_prime1") .var("x") .expression ( " if (frac(x) != 0) " " return [false]; " " else if (x <= 0) " " return [false]; " " else " " is_prime_impl1(x,min(x - 1,trunc(sqrt(x)) + 1)); " ));

//Mode 2 - switch statement based compositor.add( function_t("is_prime_impl2") .vars("x", "y") .expression ( " switch " " { " " case y == 1 : true; " " case (x % y) == 0 : false; " " default : is_prime_impl2(x,y - 1); " " } " ));

compositor.add( function_t("is_prime2") .var("x") .expression ( " switch " " { " " case x <= 0 : false; " " case frac(x) != 0 : false; " " default : is_prime_impl2(x,min(x - 1,trunc(sqrt(x)) + 1)); " " } " ));

//Mode 3 - switch statement and for-loop based compositor.add( function_t("is_prime3") .var("x") .expression ( " switch " " { " " case x <= 1 : return [false]; " " case frac(x) != 0 : return [false]; " " case x == 2 : return [true ]; " " }; " " " " var prime_lut[27] := " " { " " 2, 3, 5, 7, 11, 13, 17, 19, 23, " " 29, 31, 37, 41, 43, 47, 53, 59, 61, " " 67, 71, 73, 79, 83, 89, 97, 101, 103 " " }; " " " " var upper_bound := min(x - 1, trunc(sqrt(x)) + 1); " " " " for (var i := 0; i < prime_lut[]; i += 1) " " { " " if (prime_lut[i] >= upper_bound) " " return [true]; " " else if ((x % prime_lut[i]) == 0) " " return [false]; " " }; " " " " var lower_bound := prime_lut[prime_lut[] - 1] + 2; " " " " for (var i := lower_bound; i < upper_bound; i += 2) " " { " " if ((x % i) == 0) " " { " " return [false]; " " } " " }; " " " " return [true]; " ));

std::string expression_str1 = "is_prime1(x)"; std::string expression_str2 = "is_prime2(x)"; std::string expression_str3 = "is_prime3(x)";

expression_t expression1; expression_t expression2; expression_t expression3; expression1.register_symbol_table(symbol_table); expression2.register_symbol_table(symbol_table); expression3.register_symbol_table(symbol_table);

parser_t parser;

parser.compile(expression_str1, expression1); parser.compile(expression_str2, expression2); parser.compile(expression_str3, expression3);

for (std::size_t i = 0; i < 15000; ++i) { x = static_cast(i);

  const T result1 = expression1.value();
  const T result2 = expression2.value();
  const T result3 = expression3.value();

  const bool results_concur = (result1 == result2) &&
                              (result1 == result3) ;

  printf("%03d  Result1: %c  Result2: %c  Result3: %c  "
         "Results Concur: %c\n",
         static_cast<unsigned int>(i),
         (result1 == T(1)) ? 'T' : 'F',
         (result2 == T(1)) ? 'T' : 'F',
         (result3 == T(1)) ? 'T' : 'F',
         (results_concur)  ? 'T' : 'F');

} }


Simple Example 10 - Square-Root Via Newton-Raphson Method

The following example is an implementation of the Newton�Raphson method for computing the approximate of the square root of a real number. The example below demonstrates the use of multiple sub-expressions, sequence points, switch statements, expression local variables, function compositor and the repeat until loop. [source: simple_example_10.cpp]

template void newton_sqrt() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t; typedef exprtk::function_compositor compositor_t; typedef typename compositor_t::function function_t;

T x = T(0);

symbol_table_t symbol_table;

symbol_table.add_constants(); symbol_table.add_variable("x",x);

compositor_t compositor(symbol_table);

compositor.add( function_t("newton_sqrt") .var("x") .expression ( " switch " " { " " case x < 0 : null; " " case x == 0 : 0; " " case x == 1 : 1; " " default: " " { " " var z := 100; " " var sqrt_x := x / 2; " " repeat " " if (equal(sqrt_x^2, x)) " " break[sqrt_x]; " " else " " sqrt_x := (1 / 2) * (sqrt_x + (x / sqrt_x)); " " until ((z -= 1) <= 0); " " }; " " } " ));

const std::string expression_str = "newton_sqrt(x)";

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(expression_str,expression);

for (std::size_t i = 0; i < 1000; ++i) { x = static_cast(i);

  const T result = expression.value();
  const T real   = std::sqrt(x);
  const T error  = std::abs(result - real);

  printf("sqrt(%03d) - Result: %15.13f\tReal: %15.13f\tError: %18.16f\n",
         static_cast<unsigned int>(i),
         result,
         real,
         error);

} }


Simple Example 11 - Square-Wave Derived From A Large Number Of Harmonics

The following is similar to Example 2. However in this example, the square wave form is generated using 1000 harmonics. The example demonstrates the use of for-loops, implied multiplications, expression local variables and addition/multiplication assignment operators. [source: simple_example_11.cpp]

template void square_wave2() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string wave_program = " var r := 0; " " " " for (var i := 0; i < 1000; i += 1) " " { " " r += (1 / (2i + 1)) * sin((4i + 2) * pi * f * t); " " }; " " " " r *= a * (4 / pi); ";

static const T pi = T(3.141592653589793238462643383279502);

T f = pi / T(10); T t = T(0); T a = T(10);

symbol_table_t symbol_table; symbol_table.add_variable("f",f); symbol_table.add_variable("t",t); symbol_table.add_variable("a",a); symbol_table.add_constants();

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(wave_program,expression);

const T delta = (T(4) * pi) / T(1000);

for (t = (T(-2) * pi); t <= (T(+2) * pi); t += delta) { const T result = expression.value(); printf("%19.15f\t%19.15f\n", t, result); } }

The C++ Mathematical Expression Library Sqaure Wave II Graph - ExprTk - Copyright Arash Partow



Simple Example 12 - Implementation Of The Bubble Sort Algorithm

The following is an example of the 'venerable' Bubble Sort algorithm. The example demonstrates functionality such as vector elements, repeat-until loop, nested for-loop, expression local variables and the swap operator. [source: simple_example_12.cpp]

template void bubble_sort() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string bubblesort_program = " var upper_bound := v[]; " " " " repeat " " var new_upper_bound := 0; " " " " for (var i := 1; i < upper_bound; i += 1) " " { " " if (v[i - 1] > v[i]) " " { " " v[i - 1] <=> v[i]; " " new_upper_bound := i; " " }; " " }; " " " " upper_bound := new_upper_bound; " " " " until (upper_bound <= 1); ";

T v[] = { T(9.1), T(2.2), T(1.3), T(5.4), T(7.5), T(4.6), T(3.7) };

symbol_table_t symbol_table; symbol_table.add_vector("v",v);

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(bubblesort_program,expression);

expression.value(); }


Simple Example 13 - Savitzky-Golay Digital Smoothing Filter

The following is an example implementation of the Savitzky-Golay smoothing filter. A periodic signal with Additive White noise is generated (v_in), the Savitzky-Golay filter is then applied to the noisy signal and output to the vector v_out. The graph below denotes the noisy and smoothed signals in blue and red respectively. The example demonstrates the use of user defined vectors, expression local vectors and variables, nested for-loops, conditional statements and the vector size operator. [source: simple_example_13.cpp]

template void savitzky_golay_filter() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string sgfilter_program = " var weight[9] := " " { " " -21, 14, 39, " " 54, 59, 54, " " 39, 14, -21 " " }; " " " " if (v_in[] >= weight[]) " " { " " const var lower_bound := trunc(weight[] / 2); " " const var upper_bound := v_in[] - lower_bound; " " " " v_out := 0; " " " " for (var i := lower_bound; i < upper_bound; i += 1) " " { " " for (var j := -lower_bound; j <= lower_bound; j += 1) " " { " " v_out[i] += weight[j + lower_bound] * v_in[i + j]; " " }; " " }; " " " " v_out /= sum(weight); " " } ";

const std::size_t n = 1024;

std::vector v_in; std::vector v_out;

const T pi = T(3.141592653589793238462643383279502);

srand(static_cast(time(0)));

// Generate a signal with noise. for (T t = T(-5); t <= T(+5); t += T(10.0 / n)) { const T noise = T(0.5 * (rand() / (RAND_MAX + 1.0) - 0.5)); v_in.push_back(sin(2.0 * pi * t) + noise); }

v_out.resize(v_in.size());

symbol_table_t symbol_table; symbol_table.add_vector("v_in" , v_in ); symbol_table.add_vector("v_out", v_out);

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(sgfilter_program,expression);

expression.value();

for (std::size_t i = 0; i < v_out.size(); ++i) { printf("%10.6f\t%10.6f\n", v_in[i], v_out[i]); } }

The C++ Mathematical Expression Library Savitzky Golay Filter - ExprTk - Copyright Arash Partow



Simple Example 14 - Standard Deviation Via Vector Processing Methods

The following example calculates the population Standard Deviation of a vector x comprised of values in the range [1,25]. The example demonstrates the vector processing capabilities of ExprTk, such as the definition and initialisation of expression local vectors, unary-operator and aggregator functions over vectors, scalar-vector arithmetic and the vector size operator. [source: simple_example_14.cpp]

template void stddev_example() { typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string stddev_program = " var x[25] := { " " 1, 2, 3, 4, 5, " " 6, 7, 8, 9, 10, " " 11, 12, 13, 14, 15, " " 16, 17, 18, 19, 20, " " 21, 22, 23, 24, 25 " " }; " " " " sqrt(sum([x - avg(x)]^2) / x[]) ";

expression_t expression;

parser_t parser; parser.compile(stddev_program,expression);

T stddev = expression.value();

printf("stddev(1..25) = %10.6f\n",stddev); }


Simple Example 15 - Black-Scholes-Merton Option Pricing Model

The following example calculates the price of European Call and Put options using the Black-Scholes-Merton option pricing model, and confirms the prices are arbitrage free by computing thePut-Call parity. The example demonstrates the use of user defined and expression local variables, user defined numeric constants, conditional statements, string comparisons and arithmetic functionality. [source: simple_example_15.cpp]

template void black_scholes_merton_model() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string bsm_model_program = " var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); " " var d2 := d1 - v * sqrt(t); " " " " if (callput_flag == 'call') " " s * ncdf(d1) - k * e^(-r * t) * ncdf(d2); " " else if (callput_flag == 'put') " " k * e^(-r * t) * ncdf(-d2) - s * ncdf(-d1); " " ";

T s = T(60.00); // Spot / Stock / Underlying / Base price T k = T(65.00); // Strike price T v = T( 0.30); // Volatility T t = T( 0.25); // Years to maturity T r = T( 0.08); // Risk free rate

std::string callput_flag;

static const T e = exprtk::details::numeric::constant::e;

symbol_table_t symbol_table; symbol_table.add_variable("s",s); symbol_table.add_variable("k",k); symbol_table.add_variable("t",t); symbol_table.add_variable("r",r); symbol_table.add_variable("v",v); symbol_table.add_constant("e",e); symbol_table.add_stringvar("callput_flag",callput_flag);

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(bsm_model_program,expression);

callput_flag = "call";

const T bsm_call_option_price = expression.value();

callput_flag = "put";

const T bsm_put_option_price = expression.value();

printf("BSM(call, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n", s, k, t, r, v, bsm_call_option_price);

printf("BSM(put , %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n", s, k, t, r, v, bsm_put_option_price);

const T put_call_parity_diff = (bsm_call_option_price - bsm_put_option_price) - (s - k * std::exp(-r * t));

printf("Put-Call parity difference: %20.17f\n", put_call_parity_diff); }


Simple Example 16 - Linear Least Squares Using Vector Processing Methods

The following example attempts to compute a linear fit for a set of 2D data points utilizing the Linear Least Squares method. The data points are comprised of two vectors named x and y plotted as blue on the chart, the result being a linear equation in the form of y = β x + α which is depicted in red. The example demonstrates the use of user defined vectors, vector operations and aggregators and conditional statements. [source: simple_example_16.cpp]

template void linear_least_squares() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string linear_least_squares_program = " if (x[] == y[]) " " { " " var mean_x := avg(x); " " var mean_y := avg(y); " " " " beta := sum((x - mean_x) * (y - mean_y)) / " " sum((x - mean_x)^2); " " " " alpha := mean_y - beta * mean_x; " " " " rmse := sqrt(sum((beta * x + alpha - y)^2) / y[]); " " } " " else " " { " " alpha := null; " " beta := null; " " rmse := null; " " } ";

T x[] = {T( 1), T( 2), T(3), T( 4), T( 5), T(6), T( 7), T( 8), T( 9), T(10)}; T y[] = {T(8.7), T(6.8), T(6), T(5.6), T(3.8), T(3), T(2.4), T(1.7), T(0.4), T(-1)};

T alpha = T(0); T beta = T(0); T rmse = T(0);

symbol_table_t symbol_table; symbol_table.add_variable("alpha", alpha); symbol_table.add_variable("beta" , beta ); symbol_table.add_variable("rmse" , rmse ); symbol_table.add_vector ("x" , x ); symbol_table.add_vector ("y" , y );

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; if (!parser.compile(linear_least_squares_program,expression)) { printf("error: %s\n",parser.error().c_str()); return; }

expression.value();

printf("alpha: %15.12f\n", alpha); printf("beta: %15.12f\n", beta ); printf("rmse: %15.12f\n", rmse ); printf("y = %15.12fx + %15.12f\n", beta, alpha); }

The C++ Mathematical Expression Library Linear Least Squares - ExprTk - Copyright Arash Partow



Simple Example 17 - Approximation Of Pi (π) via The Monte-Carlo Method

The following example will compute an approximate value forπ using theMonte-Carlo method. The example demonstrates the use of vector inequality operations, vector initialisation via expressions, the vector size operator, the summation aggregator and user defined functions for generating a uniformly distributed random value in the range [0,1). [source: simple_example_17.cpp]

template struct rnd_01 final : public exprtk::ifunction { using exprtk::ifunction::operator();

rnd_01() : exprtk::ifunction(0) { ::srand(static_cast(time(NULL))); }

inline T operator()() override { // Note: Do not use this in production // Result is in the interval [0,1) return T(::rand() / T(RAND_MAX + 1.0)); } };

template void monte_carlo_pi() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string monte_carlo_pi_program = " var samples[2 * 10^8] := [(rnd_01^2 + rnd_01^2) <= 1]; " " 4 * sum(samples) / samples[]; ";

rnd_01 rnd01;

symbol_table_t symbol_table; symbol_table.add_function("rnd_01",rnd01);

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(monte_carlo_pi_program,expression);

const T approximate_pi = expression.value();

const T real_pi = T(3.141592653589793238462643383279502); // or close enough...

printf("pi ~ %20.17f\terror: %20.17f\n", approximate_pi, std::abs(real_pi - approximate_pi)); }


Simple Example 18 - File I/O Processing Demonstration

The following example will open a file named 'file.txt' in write mode, and write to the file a piece of text ten times, then finally close the file. The following example demonstrates the ExprTk file I/O package capabilities, handle manipulations, the null type, local string variables, if-else statements and for-loops. [source: simple_example_18.cpp]

template void file_io() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string fileio_program = " var file_name := 'file.txt'; " " var stream := null; " " " " if (stream := open(file_name,'w')) " " println('Successfully opened file: ' + file_name); " " else " " { " " println('Failed to open file: ' + file_name); " " return [false]; " " }; " " " " var s := 'Hello world...'; " " " " for (var i := 0; i < 10; i += 1) " " { " " write(stream,s); " " }; " " " " if (close(stream)) " " println('Sucessfully closed file: ' + file_name); " " else " " { " " println('Failed to close file: ' + file_name); " " return [false]; " " } ";

exprtk::rtl::io::file::package fileio_package; exprtk::rtl::io::println println;

symbol_table_t symbol_table; symbol_table.add_function("println",println); symbol_table.add_package (fileio_package );

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(fileio_program,expression);

printf("Result %10.3f\n",expression.value()); }


Simple Example 19 - User Defined Var-Arg Function With Vector Operations

The following example illustrates a var-arg igeneric_function definition that can handle two specific overloads. The first being a vector only, the second being a vector and range (using two scalars) input set. The function when invoked will populate the input vector over the defined range with uniformly distributed pseudo-random values in the range [0,1). The example expression takes a signal vector, then proceeds to add a noise vector to the signal, resulting in a 'noisy-signal'. Furthermore the resulting noisy signal's average as well as its element-wise form is printed to stdout using a for-loop. [source: simple_example_19.cpp]

template class randu : public exprtk::igeneric_function { public:

typedef typename exprtk::igeneric_function igfun_t; typedef typename igfun_t::parameter_list_t parameter_list_t; typedef typename igfun_t::generic_type generic_type; typedef typename generic_type::vector_view vector_t;

using exprtk::igeneric_function::operator();

randu() : exprtk::igeneric_function("V|VTT") /* Overloads: 0. V - vector 1. VTT - vector, r0, r1 */ { ::srand(static_cast(time(NULL))); }

inline T operator()(const std::size_t& ps_index, parameter_list_t parameters) { vector_t v(parameters[0]);

  std::size_t r0 = 0;
  std::size_t r1 = v.size() - 1;

  using namespace exprtk::rtl::vecops::helper;

  if (
       (1 == ps_index) &&
       !load_vector_range<T>::process(parameters, r0, r1, 1, 2, 0)
     )
     return T(0);

  for (std::size_t i = r0; i <= r1; ++i)
  {
     v[i] = rnd();
  }

  return T(1);

}

private:

inline T rnd() { // Note: Do not use this in production // Result is in the interval [0,1) return T(::rand() / T(RAND_MAX + 1.0)); } };

template void vector_randu() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string vecrandu_program = " var noise[6] := [0]; " " " " if (randu(noise, 0, 5) == false) " " { " " println('Failed to generate noise'); " " return [false]; " " }; " " " " var noisy[noise[]] := signal + (noise - 1/2); " " " " for (var i := 0; i < noisy[]; i += 1) " " { " " println('noisy[',i,'] = ', noisy[i]); " " }; " " " " println('avg: ', avg(noisy)); " " ";

T signal[] = { T(1.1), T(2.2), T(3.3), T(4.4), T(5.5), T(6.6), T(7.7) };

exprtk::rtl::io::println println; randu randu;

symbol_table_t symbol_table; symbol_table.add_vector ("signal" , signal ); symbol_table.add_function("println", println); symbol_table.add_function("randu" , randu );

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(vecrandu_program,expression);

expression.value(); }


Simple Example 20 - Vector Processing Runtime Checks

ExprTk provides the ability to catch and handle, at runtime, vector access and processing violations. This is achieved by initially registering with the parser a Vector Access Runtime Check (VARTC) handler that subsequently is used to inject runtime checks into vector processing statements. The following example demonstrates how a simple custom VARTC can be defined and registered with a parser. The expression when evaluated will trigger an access violation, the handler will attempt to determine which vector the violation occurred on, and then print pertinent information to stdout. [source: simple_example_20.cpp]

struct vector_access_rtc : public exprtk::vector_access_runtime_check { typedef std::map<void*, std::string> map_t; map_t vector_map;

bool handle_runtime_violation(violation_context& context) { const map_t::iterator itr = vector_map.find(static_cast<void*>(context.base_ptr)); const std::string vector_name = (itr != vector_map.end()) ? itr->second : "Unknown" ;

  printf("Runtime vector access violation\n"
         "Vector: %s base: %p end: %p access: %p typesize: %d\n",
         vector_name.c_str(),
         context.base_ptr   ,
         context.end_ptr    ,
         context.access_ptr ,
         static_cast<unsigned int>(context.type_size));

  throw std::runtime_error
     ("Runtime vector access violation. Vector: " + vector_name);

  return false;

} };

template void vector_overflow_example() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string expression_str = " for (var i := 0; i < max(v0[],v1[]); i += 1) " " { " " v0[i] := (2 * v0[i]) + (v1[i] / 3); " " } ";

T v0[5 ] = { 0, 1, 2, 3, 4 }; T v1[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

vector_access_rtc vec_rtc;

vec_rtc.vector_map[v0] = "v0"; vec_rtc.vector_map[v1] = "v1";

symbol_table_t symbol_table; expression_t expression; parser_t parser;

symbol_table.add_vector("v0", v0); symbol_table.add_vector("v1", v1);

expression.register_symbol_table(symbol_table);

parser.register_vector_access_runtime_check(vec_rtc);

if (!parser.compile(expression_str, expression)) { printf("Error: %s\tExpression: %s\n", parser.error().c_str(), expression_str.c_str());

  return;

}

try { expression.value(); } catch(std::runtime_error& exception) { printf("Exception: %s\n",exception.what()); } }


Simple Example 21 - Cox, Ross and Rubinstein Binomial Option Pricing Model

The following example computes the prices of European Call and Put options for a given strike price using theCox-Ross-Rubinstein binomial option pricing model, and confirms the prices are somewhat arbitrage free by computing thePut-Call parity. The example demonstrates the use of vector processing, switch statements, user defined and expression local variables, numerical constants, conditional statements, for-loop structures, string comparisons and arithmetic functionality. [source: simple_example_21.cpp]

template void binomial_option_pricing_model() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string european_option_binomial_model_program = " var dt := t / n; " " var z := exp(r * dt); " " var z_inv := 1 / z; " " var u := exp(v * sqrt(dt)); " " var u_inv := 1 / u; " " var p_up := (z - u_inv) / (u - u_inv); " " var p_down := 1 - p_up; " " " " var option_price[n + 1] := [0]; " " " " for (var i := 0; i <= n; i += 1) " " { " " var base_price := s * u^(n - 2i); " " " " option_price[i] := " " switch " " { " " case callput_flag == 'call' : max(base_price - k, 0); " " case callput_flag == 'put' : max(k - base_price, 0); " " }; " " }; " " " " for (var j := n - 1; j >= 0; j -= 1) " " { " " for (var i := 0; i <= j; i += 1) " " { " " option_price[i] := z_inv * " " (p_up * option_price[i] + p_down * option_price[i + 1]); " " } " " }; " " " " option_price[0]; ";

T s = T( 100.00); // Spot / Stock / Underlying / Base price T k = T( 110.00); // Strike price T v = T( 0.30); // Volatility T t = T( 2.22); // Years to maturity T r = T( 0.05); // Risk free rate T n = T(1000.00); // Number of time steps

std::string callput_flag;

symbol_table_t symbol_table; symbol_table.add_variable("s",s); symbol_table.add_variable("k",k); symbol_table.add_variable("t",t); symbol_table.add_variable("r",r); symbol_table.add_variable("v",v); symbol_table.add_constant("n",n); symbol_table.add_stringvar("callput_flag",callput_flag);

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(european_option_binomial_model_program,expression);

callput_flag = "call";

const T binomial_call_option_price = expression.value();

callput_flag = "put";

const T binomial_put_option_price = expression.value();

printf("BinomialPrice(call, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n", s, k, t, r, v, binomial_call_option_price);

printf("BinomialPrice(put , %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n", s, k, t, r, v, binomial_put_option_price);

const T put_call_parity_diff = (binomial_call_option_price - binomial_put_option_price) - (s - k * std::exp(-r * t));

printf("Put-Call parity difference: %20.17f\n", put_call_parity_diff); }



Simple Example 22 - Implied Volatility Of A European Option

The following example calculates the implied volatility of European Call and Put options for the same strike based on a given target price using the Newton-Raphson method, where the derivative of the option price with respect to its volatility will be itsVega. The example demonstrates the use of compositor functions, switch statements, conditional statements, user defined and expression local variables and constant variables, numerical constants, string comparisons, loop control structures, the ternary operator, inline statements, immutable symbol tables and arithmetic functionality. [source: simple_example_22.cpp]

template void compute_european_option_implied_volatility() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t; typedef exprtk::function_compositor compositor_t; typedef typename compositor_t::function function_t;

const std::string option_implied_volatility_program = " const var epsilon := 0.0000001; " " const var max_iters := 1000; " " " " var v := 0.5; /* Initial volatility guess */ " " var itr := 0; " " " " while ((itr += 1) <= max_iters) " " { " " var price := " " switch " " { " " case callput_flag == 'call' : bsm_call(s, k, r, t, v); " " case callput_flag == 'put' : bsm_put (s, k, r, t, v); " " }; " " " " var price_diff := price - target_price; " " " " if (abs(price_diff) <= epsilon) " " { " " break; " " }; " " " " var vega := bsm_vega(s, k, r, t, v); " " " " if (vega < epsilon) " " { " " itr := max_iters + 1; " " break; " " }; " " " " v -= price_diff / vega; " " }; " " " " itr <= max_iters ? v : null; ";

T s = T(100.00); // Spot / Stock / Underlying / Base price T k = T(110.00); // Strike price T t = T( 2.22); // Years to maturity T r = T( 0.05); // Risk free rate T target_price = T( 0.00);

std::string callput_flag;

symbol_table_t symbol_table(symbol_table_t::e_immutable); symbol_table.add_variable("s",s); symbol_table.add_variable("k",k); symbol_table.add_variable("t",t); symbol_table.add_variable("r",r); symbol_table.add_stringvar("callput_flag",callput_flag); symbol_table.add_variable ("target_price",target_price); symbol_table.add_pi();

compositor_t compositor(symbol_table);

compositor.add( function_t("bsm_call") .vars("s", "k", "r", "t", "v") .expression ( " var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); " " var d2 := d1 - v * sqrt(t); " " s * ncdf(d1) - k * exp(-r * t) * ncdf(d2); " ));

compositor.add( function_t("bsm_put") .vars("s", "k", "r", "t", "v") .expression ( " var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); " " var d2 := d1 - v * sqrt(t); " " k * exp(-r * t) * ncdf(-d2) - s * ncdf(-d1); " ));

compositor.add( function_t("bsm_vega") .vars("s", "k", "r", "t", "v") .expression ( " var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); " " s * exp(-d1^2 / 2) / sqrt(2pi) * sqrt(t); " ));

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(option_implied_volatility_program, expression);

{ callput_flag = "call"; target_price = T(18.339502);

  const T call_option_implied_vol = expression.value();

  printf("Call Option(s: %5.3f, k: %5.3f, t: %5.3f, r: %5.3f) "
         "@ $%8.6f Implied volatility = %10.8f\n",
         s, k, t, r, target_price, call_option_implied_vol);

}

{ callput_flag = "put"; target_price = T(16.782764);

  const T put_option_implied_vol = expression.value();

  printf("Put  Option(s: %5.3f, k: %5.3f, t: %5.3f, r: %5.3f) "
         "@ $%8.6f Implied volatility = %10.8f\n",
         s, k, t, r, target_price, put_option_implied_vol);

} }



Simple Example 23 - 1D Real Discrete Fourier Transform

The following example will generate a specific waveform into the input vector, then proceed to compute its Discrete Fourier Transform placing it into the output vector. After which only significant frequency bins (aka phasors) and their associated power amplitudes will be written to stdout. The example demonstrates the use of compositor functions and symbol table embedding, user defined and expression local variables, numerical constants, vector processing, loop control structures, RTL IO and arithmetic functionality. [source: simple_example_23.cpp]

template void real_1d_discrete_fourier_transform() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t; typedef exprtk::function_compositor compositor_t; typedef typename compositor_t::function function_t;

const T sampling_rate = 1024.0; // ~1KHz const T N = 8 * sampling_rate; // 8 seconds worth of samples

std::vector input (static_caststd::size_t(N),0.0); std::vector output(static_caststd::size_t(N),0.0);

exprtk::rtl::io::println println;

symbol_table_t symbol_table; symbol_table.add_vector ("input" , input ); symbol_table.add_vector ("output" , output ); symbol_table.add_function ("println" , println ); symbol_table.add_constant ("N" , N ); symbol_table.add_constant ("sampling_rate", sampling_rate); symbol_table.add_pi();

compositor_t compositor(symbol_table); compositor.load_vectors(true);

compositor.add( function_t("dft_1d_real") .var("N") .expression ( " for (var k := 0; k < N; k += 1) " " { " " var k_real := 0.0; " " var k_imag := 0.0; " " " " for (var i := 0; i < N; i += 1) " " { " " var theta := 2pi * k * i / N; " " k_real += input[i] * cos(theta); " " k_imag -= input[i] * sin(theta); " " }; " " " " output[k] := hypot(k_real,k_imag); " " } " ));

const std::string dft_program = " " " /* " " Generate an aggregate waveform comprised of three " " sine waves of varying frequencies and amplitudes. " " / " " const var num_waves := 3; " " " " var frequencies[num_waves] := { 111.125, 222.250, 333.375 }; / Hz / " " var amplitudes [num_waves] := { 11.111, 22.222, 33.333 }; / Power */ " " " " for (var i := 0; i < N; i += 1) " " { " " var time := i / sampling_rate; " " " " for (var j := 0; j < frequencies[]; j += 1) " " { " " var frequency := frequencies[j]; " " var amplitude := amplitudes [j]; " " var theta := 2 * pi * frequency * time; " " " " input[i] += amplitude * sin(theta); " " } " " }; " " " " dft_1d_real(input[]); " " " " var freq_bin_size := sampling_rate / N; " " var max_bin := ceil(N / 2); " " var max_noise_level := 1e-6; " " " " /* Normalise amplitudes */ " " output /= max_bin; " " " " println('1D Real DFT Frequencies'); " " " " for (var k := 0; k < max_bin; k += 1) " " { " " if (output[k] > max_noise_level) " " { " " var freq_begin := k * freq_bin_size; " " var freq_end := freq_begin + freq_bin_size; " " " " println('Index: ', k,' ', " " 'Freq. range: [', freq_begin, 'Hz, ', freq_end, 'Hz) ', " " 'Amplitude: ', output[k]); " " } " " } " " ";

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(dft_program,expression);

expression.value(); }


Simple Example 24 - Reverse Polish Notation Expression Evaluator

The following example will evaluate single digit number based Reverse Polish Notation expressions. The example demonstrates the use of igeneric_function, string ranges, loop control structures, user defined and expression local variables, switch statements and general arithmetic functionality. [source: simple_example_24.cpp]

template <typename T, T Process(const unsigned char)> struct char_process : public exprtk::igeneric_function { typedef typename exprtk::igeneric_function igfun_t; typedef typename igfun_t::parameter_list_t parameter_list_t; typedef typename igfun_t::generic_type generic_type; typedef typename generic_type::string_view string_t;

using exprtk::igeneric_function::operator();

char_process() : exprtk::igeneric_function("S") {}

inline T operator()(parameter_list_t parameters) { const unsigned char c = string_t(parameters[0])[0]; return Process(c); } };

template T is_digit_func(const unsigned char c) { return (('0' <= c) && (c <= '9')) ? T(1) : T(0); }

template T to_num_func(const unsigned char c) { return static_cast(c - '0'); }

template void rpn_example() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t;

const std::string rpn_program = " var stack[1000] := [0]; " " var top_index := 0; " " " " for (var i := 0; i < rpn_expression[]; i += 1) " " { " " var c := rpn_expression[i : i + 1]; " " " " if (c == ' ') " " { " " continue; " " } " " else if (is_digit(c)) " " { " " stack[top_index] := to_num(c); " " top_index += 1; " " } " " else " " { " " var operator := c; " " var operand1 := stack[top_index - 2]; " " var operand2 := stack[top_index - 1]; " " top_index -= 2; " " " " switch " " { " " case operator == '+' : stack[top_index] := operand1 + operand2; " " case operator == '-' : stack[top_index] := operand1 - operand2; " " case operator == '*' : stack[top_index] := operand1 * operand2; " " case operator == '/' : stack[top_index] := operand1 / operand2; " " case operator == '^' : stack[top_index] := operand1 ^ operand2; " " }; " " " " top_index += 1; " " } " " }; " " " " println(stack[0], ' = ', rpn_expression); " " ";

std::string rpn_expression;

char_process<T,is_digit_func > isdigit; char_process<T,to_num_func > tonum; exprtk::rtl::io::println println;

symbol_table_t symbol_table; symbol_table.add_stringvar("rpn_expression", rpn_expression); symbol_table.add_function ("println" , println ); symbol_table.add_function ("is_digit" , isdigit ); symbol_table.add_function ("to_num" , tonum );

expression_t expression; expression.register_symbol_table(symbol_table);

parser_t parser; parser.compile(rpn_program, expression);

const std::string rpn_expressions[] = { "2 3 8 / ^ 4 6 * + 3 9 / -", // 2 ^ (3 / 8) + 4 * 6 - 3 / 9 "1 2 / 6 5 2 - / * 7 +" , // (1 / 2) * (6 / (5 - 2)) + 7 "1 2 * 3 / 4 * 5 / 6 *" , // ((((1 * 2) / 3) * 4) / 5) * 6 "8 6 4 + * 2 /" // (8 * (6 + 4)) / 2 };

for (std::size_t i = 0; i < sizeof(rpn_expressions) / sizeof(std::string); ++i) { rpn_expression = rpn_expressions[i]; expression.value(); } }


Various Extended Examples

The proceeding examples demonstrate ExprTk's more advanced capabilities through practical yet simple to understand use cases:



Supplementary Materials



Benchmarks

The chart below depicts the rate of expression evaluations per second for an assortment of expressions. Each expression is specialised upon the 'double' floating point type and comprised of two variables that are varied before each expression evaluation. The expressions are evaluated in two modes: ExprTk compiled and native optimised. The benchmark itself was compiled using GCC 7.2 with O3, LTO, PGO and native architecture target compiler settings, and executed upon an Intel Xeon E5-2687W 3GHz CPU, 64GB RAM, Ubuntu 17.10 with kernel 4.10 system.Source: exprtk_benchmark.cpp

The C++ Mathematical Expression Library Benchmark Result - ExprTk - Copyright Arash Partow

Renaissance Technologies - Rentec https://www.rentec.com

TGS Management Company - TGS https://www.tgsmc.com

Black-Scholes-Merton Option Pricing Model Benchmark

The following is a benchmark based on Example 15. The BSM option pricing model is executed using native and ExprTk based implementations. There are two ExprTk implementations, vanilla and another where e(...) is replaced with the equivalent and much faster exp(...) function and also repeated sub-calculations are cached locally. The benchmark depicts the number of pricing calculations per second. The benchmark itself was compiled using GCC 7.2 with O3, LTO, PGO and native architecture target compiler settings, and executed upon an Intel Xeon E5-2687W 3GHz CPU, 64GB RAM, Ubuntu 17.10 with kernel 4.10 system.Source: exprtk_bsm_benchmark.cpp

The C++ Mathematical Expression Library Black Scholes Merton - ExprTk - Copyright Arash Partow



ExprTk Notes

The following is a list of facts and suggestions one may want to take into account when using ExprTk:

Note 34: The library name ExprTk is pronounced "Ex-Pee-Ar-Tee-Kay" or simply**"Mathematical Expression Toolkit"**.ExprTk Pronunciation



ExprTk Users

The following is a brief listing of some of the users of the ExprTk library:

NASA - ExprTk Intel - ExprTk DSTO - ExprTk CERN Atlas - ExprTk
Google - ExprTk NVIDIA - ExprTk Facebook - ExprTk FINOS - ExprTk
Los Alamos NL - ExprTk TRIUMF - ExprTk ESS - ExprTk SKA - ExprTk
DESY - ExprTk IPP - ExprTk Idaho NL - ExprTk EPICS - ExprTk
Airbus - ExprTk Volvo - ExprTk Daimler - ExprTk GIRS - ExprTk
Lockheed Martin - ExprTk Boeing - ExprTk Apple - ExprTk SpaceX - ExprTk
Schaeffler - ExprTk Salesforce - ExprTk Siemens - ExprTk SDSC - ExprTk
Parrot - ExprTk Amadeus - ExprTk Schneider - ExprTk Coveo - ExprTk
Dr Schenk - ExprTk Sandia Labs - ExprTk F4E - ExprTk OpenTURNS - ExprTk
Tower Research - ExprTk Fannie Mae - ExprTk Battelle - ExprTk MIT ACL - ExprTk
OpenGeoSys - ExprTk Mayo Clinic - ExprTk General Electric - ExprTk DIMECC - ExprTk
Sony - ExprTk Adobe - ExprTk Point72 - ExprTk Renault Group - ExprTk
Cadence - ExprTk OpenAI - ExprTk Bloomberg - ExprTk Valve - ExprTk
ByteDance - ExprTk General Motors - ExprTk US DOD - ExprTk TUC Rail - ExprTk
CERN - ExprTk BMW - ExprTk UCAR - ExprTk MLP - ExprTk
Ubisoft - ExprTk Kitware - ExprTk Autodesk - ExprTk Tencent - ExprTk
Bioconductor - ExprTk Brookhaven Lab - ExprTk Citadel LLC - ExprTk RPM Global - ExprTk
LMMS - ExprTk Microsoft - ExprTk Samson - ExprTk Magic Music - ExprTk
Mesytec - ExprTk OpenBMC - ExprTk CSIRO - ExprTk Reuters - ExprTk
ZF Friedrichshafen - ExprTk Ricardo PLC - ExprTk FAIR - ExprTk OSSIA Score - ExprTk
Innovmetric - ExprTk ORNL - ExprTk HLRS - ExprTk Arteris - ExprTk
Options - ExprTk Oracle - ExprTk Xilinx - ExprTk VCV Rack - ExprTk
JP Morgan - ExprTk Mainspring - ExprTk Morgan Stanley - ExprTk Ellington - ExprTk
Alibaba Group - ExprTk Virtu - ExprTk Credit Suisse - ExprTk Meteomatics - ExprTk
Two Sigma - ExprTk DRW - ExprTk Pixar - ExprTk BNP Paribas - ExprTk
Nuvera - ExprTk 3M - ExprTk Tesla - ExprTk Cruise - ExprTk
National Instrument - ExprTk Aerospace Corp - ExprTk Blue Origin - ExprTk Mack Trucks - ExprTk
General Atomics - ExprTk Bosch - ExprTk Jump Trading - ExprTk AMD - ExprTk
QinetiQ - ExprTk Huawei - ExprTk LISA - ExprTk ESA - ExprTk
Phytium - ExprTk Mentor Graphcs - ExprTk NATO - ExprTk Raytheon - ExprTk
SNCB - ExprTk HRT - ExprTk ARM Holdings - ExprTk Framestore - ExprTk
ITER - ExprTk Thales - ExprTk NEC Labs - ExprTk Geely - ExprTk
Frepple - ExprTk Ford - ExprTk Samsung - ExprTk Schlumberger - ExprTk
RBC - ExprTk FermiLab - ExprTk IAEA - ExprTk Intuitive - ExprTk
Teza - ExprTk AIG - ExprTk UBS - ExprTk SocGen - ExprTk
TSMC - ExprTk AM - ExprTk KARI - ExprTk G�ntner - ExprTk
Merrill Lynch - ExprTk Onto - ExprTk Keysight - ExprTk STMicroElec - ExprTk
GlobalFoundries - ExprTk Anduril - ExprTk Netflix - ExprTk MineSense - ExprTk
SEW - ExprTk Anthropic - ExprTk Seagate - ExprTk Mitsubishi - ExprTk
SteamDB - ExprTk CAE - ExprTk Spire - ExprTk JHAPL - ExprTk
Qorvo - ExprTk PTC - ExprTk IBM - ExprTk NIST - ExprTk
Palantir - ExprTk Photon Etc - ExprTk Boston Dynamics - ExprTk Qualcomm - ExprTk
Infineon - ExprTk ASML - ExprTk LSEG - ExprTk Marshall Wace - ExprTk
DJI - ExprTk PIMCO - ExprTk volkswagen - ExprTk QuantRes - ExprTk
NetEase Games - ExprTk Synopsys - ExprTk Mathworks - ExprTk Badger Systems - ExprTk
Ansys - ExprTk Moduleworks - ExprTk Golem Labs - ExprTk Plexim - ExprTk
CEA - ExprTk Warner Bros. - ExprTk Parsons Corp - ExprTk Chevron - ExprTk
Framatome - ExprTk SqrPoint Capital - ExprTk Northrop Grumman - ExprTk Phoenix Contact - ExprTk
Cenaero - ExprTk Navistar - ExprTk Newtwen - ExprTk Marvell - ExprTk
CharacterWorks - Revolut Alpega - ExprTk Aker Biomarine - ExprTk SEAVision - ExprTk
General Dynamics - ExprTk JLR - ExprTk Maxar - ExprTk RelativitySpace - ExprTk
Figure AI - ExprTk Voleon Group - ExprTk Eagle Seven - ExprTk Cavalry - ExprTk
ESRI - ExprTk GlobalWafers - ExprTk GSA Capital - ExprTk Ghost Gunner - ExprTk
Kapp Niles - ExprTk Rohde-Schwarz - ExprTk Nomura - ExprTk Cebas - ExprTk
CACI - ExprTk USAFRL - ExprTk Optergy - ExprTk Neadvance - ExprTk
DLR - ExprTk Resolume - ExprTk IMC - ExprTk Vanguard - ExprTk
Getinge - ExprTk KLA - ExprTk NuVu - ExprTk Flow Traders - ExprTk
Balyasny AM - ExprTk Simons Observator - ExprTk TGS - ExprTk DV Trading - ExprTk
Intuitive Machine - ExprTk MITRE Corp - ExprTk ABN AMRO - ExprTk Firefly Space - ExprTk
LMI - ExprTk Motorola - ExprTk Altair - ExprTk Hexagon - ExprTk
Westinghouse - ExprTk SSL - ExprTk PNNL - ExprTk Altera - ExprTk
Construct Robots - ExprTk Maptek - ExprTk Lattice - ExprTk Habana Labs - ExprTk
ARA Inc. - ExprTk Dreamworks SKG - ExprTk BK Precision - ExprTk GTS - ExprTk
Vontobel Bank - ExprTk STM Defense - ExprTk Mettler Toledo - ExprTk Winton - ExprTk
Agile Robots - ExprTk Sanmina - ExprTk L3 Harris - ExprTk Boom Supersonic - ExprTk
G+Smo - ExprTk SLAC - ExprTk Rocket Lab - ExprTk Dianomic - ExprTk
Front Pictures - ExprTk Screenberry - ExprTk AutoPol - ExprTk GenISys GmbH - ExprTk
Geomage - ExprTk waLBerla - ExprTk MRPT - ExprTk MOOSE - ExprTk
Karabiner - ExprTk Natron - ExprTk LMI - ExprTk CharacterWorks - ExprTk
Granoo - ExprTk Slic3r - ExprTk


Support and Consulting Services

Arash Partow ExprTk Consulting Services Consulting services for ExprTk are available, these include: Project integration Additional features and customisations Custom language/DSL implementations Performance enhancements For more information or to raise an issue or bug report please reach out via the contact page.

Renaissance Technologies - Rentec

TGS Management Company