pymc.compute_log_likelihood — PyMC 5.23.0 documentation (original) (raw)
pymc.compute_log_likelihood(idata, *, var_names=None, extend_inferencedata=True, model=None, sample_dims=('chain', 'draw'), progressbar=True, compile_kwargs=None)[source]#
Compute elemwise log_likelihood of model given InferenceData with posterior group.
Parameters:
idataInferenceData
InferenceData with posterior group
var_namessequence of str, optional
List of Observed variable names for which to compute log_likelihood. Defaults to all observed variables.
extend_inferencedatabool, default True
Whether to extend the original InferenceData or return a new one
modelModel
, optional
sample_dimssequence of str, default (“chain”, “draw”)
compile_kwargsdict[str, Any
] | None
Extra compilation arguments to supply to compute_log_density()
Returns:
idataInferenceData
InferenceData with log_likelihood group