pymc.fit — PyMC 5.23.0 documentation (original) (raw)
pymc.fit(n=10000, method='advi', model=None, random_seed=None, start=None, start_sigma=None, inf_kwargs=None, **kwargs)[source]#
Handy shortcut for using inference methods in functional way.
Parameters:
n: `int`
number of iterations
method: str or :class:`Inference`
string name is case insensitive in:
- ‘advi’ for ADVI
- ‘fullrank_advi’ for FullRankADVI
- ‘svgd’ for Stein Variational Gradient Descent
- ‘asvgd’ for Amortized Stein Variational Gradient Descent
model: :class:`Model`
PyMC model for inference
random_seed: None or int
inf_kwargs: dict
additional kwargs passed to Inference
start: `dict[str, np.ndarray]` or `StartDict`
starting point for inference
start_sigma: `dict[str, np.ndarray]`
starting standard deviation for inference, only available for method ‘advi’
Returns:
Other Parameters:
score: bool
evaluate loss on each iteration or not
callbacks: list[function: (Approximation, losses, i) -> None]
calls provided functions after each iteration step
progressbar: bool
whether to show progressbar or not
progressbar_theme: Theme
Custom theme for the progress bar
obj_n_mc: `int`
Number of monte carlo samples used for approximation of objective gradients
tf_n_mc: `int`
Number of monte carlo samples used for approximation of test function gradients
obj_optimizer: function (grads, params) -> updates
Optimizer that is used for objective params
test_optimizer: function (grads, params) -> updates
Optimizer that is used for test function params
more_obj_params: `list`
Add custom params for objective optimizer
more_tf_params: `list`
Add custom params for test function optimizer
more_updates: `dict`
Add custom updates to resulting updates
total_grad_norm_constraint: `float`
Bounds gradient norm, prevents exploding gradient problem
compile_kwargs: `dict`
Add kwargs to pytensor.function (e.g. {‘profile’: True})
more_replacements: `dict`
Apply custom replacements before calculating gradients