NFV systems converge virtual network services at the edge (original) (raw)

Think back to those pre-smartphone days when we were awash in gadgets -- flip phones, digicams, MP3 players, GPS fitness trackers, Nintendo Game Boys, Palm Treos, etc. There were so many you almost needed a bandoleer whenever you went out. Yet, product categories that were once multibillion-dollar markets collapsed after modern smartphones merged all those functions into a single convenient device. Skip forward a decade and the same thing is happening to the networking industry thanks to, among other developments, network function virtualization, or NFV, systems.

Features once delivered via discrete pieces of hardware have been encapsulated as software applications running as virtual appliances on any server. Server virtualization and containerization are the foundation of today's enterprise software stack. What virtualization did for business applications it is now doing to network services in the form of NFV and virtual or universal customer premises equipment, otherwise known as VCPE and uCPE, respectively.

The arguments for using a server to run multiple network services are similar to those for merging a camera, media player and GPS mapper into a phone: It offers improved flexibility, convenience, performance and manageability at lower cost by exploiting the economies of scale and steep technology curve of commodity silicon. Instead of the smartphone's low-power systems on chip (SoCs), imaging chips and touch displays, NFV systems and infrastructure exploits increasingly powerful server processors, switch silicon and solid-state storage that enable a high-density chassis to accommodate multiple network applications and user sessions.

Software-defined networking (SDN) and functions benefit carriers and enterprises alike. Carriers were first to see the advantages of NFV, having implemented most of the early NFV deployments. However, as enterprises redesigned their networks using software-defined WAN (SD-WAN) to provide cheaper, high-performance connectivity to branch offices, warehouses and temporary worksites, they rediscovered the advantages of distributed infrastructure, aka edge computing. The two trends --network function virtualization and edge computing -- have now crossed paths as edge infrastructure has emerged as the way to combine SD-WAN endpoints and other network services on a single piece of hardware.

A rapidly growing market

Like most nascent and dynamic trends, there aren't firm or widely accepted boundaries for NFV edge hardware. The semantic imprecision leads to varying estimates of the market size and growth rate. Most network watchers agree sales are surging, however.

The market for edge virtual networking is composed of three categories:

Network function virtualization (NFV) architecture

The basic elements of a network function virtualization setup, where virtual network functions, or VNF, are building block within NFV framework.

Together, these components provide virtual implementations of network services and are seeing explosive growth (see below).

Admittedly, such high growth rates are typical of an emerging market starting from nothing. However, several factors will cause sales of NFVI, vCPE and uCPE to reach multibillion-dollar proportions. These include the following:

Functionality and use cases

Aside from the cost-effectiveness of using commodity components, the chief benefit of converged virtual network infrastructure is the flexibility to run multiple services on a single piece of hardware. The software-based design can also combine multiple VNFs into so-called service chains, such that an SD-WAN endpoint terminates into a voice over IP (VoIP) session border controller or firewall.

The most popular VNFs for both large enterprises and SMBs include:

the benefits of SD-WAN at the edge

NFV systems products

The point of NFV and vCPE is to decouple network hardware from software to provide the flexibility to use any processor architecture and system design capable of running a virtualization or container stack. Such adaptability makes compiling an exhaustive list of NFV products an impossibility, because any computer -- whether a 4U, 4S behemoth with a terabyte of RAM or a Raspberry Pi using an Arm SoC with a gigabyte of memory -- can run virtual network services. Nonetheless, system vendors have responded to increased interest in converged virtual services by releasing products tailored to network edge environments.

The following is representative of currently available products.

Why interest in edge NFVI now?

Four factors underlie enterprise interest in edge servers with NFVI:

  1. Increasing preference for SD-WAN over broadband, instead of traditional data circuits for remote connectivity.
  2. The broad availability of virtual software appliances for SD-WAN and other networking services.
  3. The processing power available from compact, small form-factor and 1U systems that can run VM or container stacks hosting multiple applications.
  4. Infrastructure management software capable of centralizing the administration, monitoring and governance of distributed systems under a single interface.

Together, these factors provide enterprises with the flexibility to consolidate network services and enterprise applications on the same NFV systems and hardware. Doing so improves the performance, efficiency and scalability of remote infrastructure -- and at lower cost -- than traditional purpose-built network hardware.

Dig Deeper on Converged infrastructure management