What is a collaborative robot (cobot)? (original) (raw)

A collaborative robot, also known as a cobot, is an industrial robot that can safely operate alongside humans in a shared workspace. In contrast, autonomous robots are hard-coded to repeatedly perform one task, work independently and remain stationary.

Advances in mobile technology, artificial intelligence (AI), machine vision, cognitive computing and touch technology are making it possible for small, lower-power robots to be aware of their surroundings and perform multiple types of tasks safely in close proximity to human workers. In addition to being programmed to protect the safety of their human co-workers, cobots can quickly learn various tasks through demonstration and reinforcement learning.

Cobots frequently carry out manufacturing-related tasks, including assembly, packaging automation, material handling, machine tending and product quality inspection and control.

Due to shortages of qualified workers and increasing labor costs, the market for cobots continues to grow and is expected to increase from 1.5billionin2023to1.5 billion in 2023 to 1.5billionin2023to23.5 billion by 2033.

What makes a cobot safe?

The safety of cobots is achieved through their thoughtful design, adherence to safety standards, comprehensive risk assessments and operational controls that prioritize human safety.

Key factors that enhance the safety of cobots include the following:

Additional methods to minimize dangers can include camera vision, torque sensors, laser scanners, LED and audio feedback, and machine learning-enhanced pattern recognition.

Types of cobots

According to ISO 10218, there are four types of cobots.

Power and force limiting

Built to reduce the risk of injury, these cobots are restrained in the amount of force they can exert on their environment. They're built with rounded corners and no sharp edges because they're designed to work alongside humans without additional safety measures such as barriers, vision systems or external scanners. These cobots further improve human safety by not having exposed motors or pinch points where a person or part of their body could get caught.

Because of their built-in intelligent collision sensors, these collaborative cobots automatically stop working when they come in contact with a human co-worker. They're typically more flexible but also smaller, slower and less powerful than conventional robots.

Safety-rated monitored stop

These cobots employ sensors to detect the presence of human beings and automatically stop working when a worker enters a predefined area. The human workers can resume the cobot's operation with the push of a button.

These cobots are ideal for industrial automation tasks requiring help with little human involvement. They employ a variety of safety sensors in addition to stopping the cobot when it gets too close to its human co-worker.

Hand guiding

These cobots enable operators to physically guide them through a task. For example, the programmer can show the cobot how to complete the different tasks by guiding it with their hand. With this function, it's simple to reprogram the cobot without having to change the software. These cooperative cobots have a short learning curve, which reduces downtime.

Speed and separation monitoring

These cobots employ sensors to keep a safe distance from human workers and have features comparable to the safety-rated monitored cobots. But these cobots have more advanced features. For instance, a machine vision system continuously monitors its two operational zones -- the warning zone and the stop zone. When it notices motion in close proximity to the warning zone, the cobot's vision system slows it down to a safe speed. The cobot promptly stops working when a person enters the stop zone and resumes once the person has left the area.

What is the difference between a cobot and an industrial robot?

Industrial robots and cobots have many similarities as well as some unique features. The primary features and variations between a cobot and an industrial robot are as follows:

Although industrial robots play an important role in the automotive industry and its suppliers, their high cost, large size, weight and complex programming requirements have limited their use in other vertical industries.

Another barrier to adoption is the cultural fear of robots dominating the workplace and replacing human employees. Cobots are purposely designed to address this fear. A collaborative robot is intended to augment the human worker's capabilities, not take their place. In many cases, the cobot takes the form of a robot arm, providing the worker with an extra set of hands.

Use cases of cobots

Cobots are used in numerous applications and sectors around the world. The following are the most common applications of cobots:

Which industries use cobots?

Cobots generally have lower power requirements than their larger, autonomous counterparts, are often mobile and use collision detection to prevent injury to their human colleagues and other cobots.

Cobots are used in various industries including the following:

A report by Marketsandmarkets Research mentions popular robotics providers and cobot manufacturers including FANUC, ABB, Yaskawa Electric Corp., Universal Robots, AUBO, KUKA, Rethink Robotics and Techman Robot.

Benefits of cobots

Cobots enhance the work environment for people and offer a range of advantages for industrial and manufacturing applications. The following are the most common benefits of cobots:

Limitations of cobots

Cobots also have the following drawbacks:

List of cobot types, use cases, safety factors, benefits and limitations.

Collaborative robots, or cobots, function safely alongside people.

How to program a cobot

Traditional robots require expensive labor because the programming is normally carried out by professional robotics engineers. A cobot is significantly simpler to program because it doesn't require specialist programming knowledge and can be programmed without the need for a robotic integration company. This also keeps the deployment cost of cobots to a minimum.

Drag-and-drop programming, where a user's actions are translated into code, is the simplest method of programming a cobot. Simply dragging and dropping the action the user wants the cobot to perform in the proper order completes the task. For certain cobots, users can sketch the general layout of the program using simple buttons to steer the robot toward program points or tasks. Either method is easy to learn and enables more workers to interact with the robot in a useful way. Some cobot manufacturers go beyond the straightforward programming approach by providing application wizards, which can simplify a difficult operation, such as setting up an end-of-line palletizing robot, so that it takes less time.

Cobots can also be programmed offline using computer simulations. In this method, users create and test programs without the physical robot. Specialized software simulates the cobot's environment and tasks, enabling thorough planning and troubleshooting before deploying the cobot in the actual production environment.

Because collaborative robots are easier to program, people can autonomously install and maintain them as well as reuse them for new tasks as industrial processes evolve.

How much does a cobot cost?

The price of cobots varies according to the maker, the functionality, features and the end-of-arm tooling used. When considering the use of a cobot in manufacturing, an organization should determine the precise return on investment that justifies the expense.

When selecting a platform, the cobot's manufacturing quality should also be considered because additional tooling will increase the cost.

Here's a typical breakdown of cobot prices based on basic models:

The final price of a cobot depends on the specific needs of an organization and its chosen brand. For example, high-end cobots can cost over $100,000. ‍

Predictive maintenance, digital twins and cobots are a few of the ways AI is assisting the manufacturing sector. Discover the 10 crucial applications of AI in the manufacturing industry.

This was last updated in December 2024

Continue Reading About What is a collaborative robot (cobot)?