tf.TensorArray | TensorFlow v2.16.1 (original) (raw)
Class wrapping dynamic-sized, per-time-step, Tensor arrays.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.TensorArray(
dtype,
size=None,
dynamic_size=None,
clear_after_read=None,
tensor_array_name=None,
handle=None,
flow=None,
infer_shape=True,
element_shape=None,
colocate_with_first_write_call=True,
name=None
)
Used in the notebooks
This class is meant to be used with dynamic iteration primitives such aswhile_loop
and map_fn
. It supports gradient back-propagation via special "flow" control flow dependencies.
Note that although the array can be read multiple times and positions can be overwritten, behavior may be undefined when storing multiple references to the same array and clear_after_read is False. In particular, avoid using methods like concat() to convert an intermediate TensorArray to a Tensor, then further modifying the TensorArray, particularly if you need to backprop through it later.
Example 1: Plain reading and writing.
ta = tf.TensorArray(tf.float32, size=0, dynamic_size=True, clear_after_read=False)
ta = ta.write(0, 10)
ta = ta.write(1, 20)
ta = ta.write(2, 30)
``
ta.read(0)
<tf.Tensor: shape=(), dtype=float32, numpy=10.0>
ta.read(1)
<tf.Tensor: shape=(), dtype=float32, numpy=20.0>
ta.read(2)
<tf.Tensor: shape=(), dtype=float32, numpy=30.0>
ta.stack()
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([10., 20., 30.],
dtype=float32)>
Example 2: Fibonacci sequence algorithm that writes in a loop then returns.
@tf.function
def fibonacci(n):
ta = tf.TensorArray(tf.float32, size=0, dynamic_size=True)
ta = ta.unstack([0., 1.])
` for i in range(2, n):` ` ta = ta.write(i, ta.read(i - 1) + ta.read(i - 2))`
return ta.stack()
``
fibonacci(7)
<tf.Tensor: shape=(7,), dtype=float32,
numpy=array([0., 1., 1., 2., 3., 5., 8.], dtype=float32)>
Example 3: A simple loop interacting with a tf.Variable.
v = tf.Variable(1)
@tf.function
def f(x):
ta = tf.TensorArray(tf.int32, size=0, dynamic_size=True)
for i in tf.range(x):
v.assign_add(i)
ta = ta.write(i, v)
return ta.stack()
f(5)
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 1, 2, 4, 7, 11],
dtype=int32)>
Args | |
---|---|
dtype | (required) data type of the TensorArray. |
size | (optional) int32 scalar Tensor: the size of the TensorArray. Required if handle is not provided. |
dynamic_size | (optional) Python bool: If true, writes to the TensorArray can grow the TensorArray past its initial size. Default: False. |
clear_after_read | Boolean (optional, default: True). If True, clear TensorArray values after reading them. This disables read-many semantics, but allows early release of memory. |
tensor_array_name | (optional) Python string: the name of the TensorArray. This is used when creating the TensorArray handle. If this value is set, handle should be None. |
handle | (optional) A Tensor handle to an existing TensorArray. If this is set, tensor_array_name should be None. Only supported in graph mode. |
flow | (optional) A float Tensor scalar coming from an existingTensorArray.flow. Only supported in graph mode. |
infer_shape | (optional, default: True) If True, shape inference is enabled. In this case, all elements must have the same shape. |
element_shape | (optional, default: None) A TensorShape object specifying the shape constraints of each of the elements of the TensorArray. Need not be fully defined. |
colocate_with_first_write_call | If True, the TensorArray will be colocated on the same device as the Tensor used on its first write (write operations include write, unstack, and split). If False, the TensorArray will be placed on the device determined by the device context available during its initialization. |
name | A name for the operation (optional). |
Raises | |
---|---|
ValueError | if both handle and tensor_array_name are provided. |
TypeError | if handle is provided but is not a Tensor. |
Attributes | |
---|---|
dtype | The data type of this TensorArray. |
dynamic_size | Python bool; if True the TensorArray can grow dynamically. |
element_shape | The tf.TensorShape of elements in this TensorArray. |
flow | The flow Tensor forcing ops leading to this TensorArray state. |
handle | The reference to the TensorArray. |
Methods
close
close(
name=None
)
Close the current TensorArray.
concat
concat(
name=None
)
Return the values in the TensorArray as a concatenated Tensor
.
All of the values must have been written, their ranks must match, and and their shapes must all match for all dimensions except the first.
Args | |
---|---|
name | A name for the operation (optional). |
Returns |
---|
All the tensors in the TensorArray concatenated into one tensor. |
gather
gather(
indices, name=None
)
Return selected values in the TensorArray as a packed Tensor
.
All of selected values must have been written and their shapes must all match.
Args | |
---|---|
indices | A 1-D Tensor taking values in [0, max_value). If theTensorArray is not dynamic, max_value=size(). |
name | A name for the operation (optional). |
Returns |
---|
The tensors in the TensorArray selected by indices, packed into one tensor. |
grad
grad(
source, flow=None, name=None
)
identity
identity()
Returns a TensorArray with the same content and properties.
Returns |
---|
A new TensorArray object with flow that ensures the control dependencies from the contexts will become control dependencies for writes, reads, etc. Use this object for all subsequent operations. |
read
read(
index, name=None
)
Read the value at location index
in the TensorArray.
Args | |
---|---|
index | 0-D. int32 tensor with the index to read from. |
name | A name for the operation (optional). |
Returns |
---|
The tensor at index index. |
scatter
scatter(
indices, value, name=None
)
Scatter the values of a Tensor
in specific indices of a TensorArray
.
Args | |
---|---|
indices | A 1-D Tensor taking values in [0, max_value). If theTensorArray is not dynamic, max_value=size(). |
value | (N+1)-D. Tensor of type dtype. The Tensor to unpack. |
name | A name for the operation (optional). |
Returns |
---|
A new TensorArray object with flow that ensures the scatter occurs. Use this object for all subsequent operations. |
Raises | |
---|---|
ValueError | if the shape inference fails. |
size
size(
name=None
)
Return the size of the TensorArray.
split
split(
value, lengths, name=None
)
Split the values of a Tensor
into the TensorArray.
Args | |
---|---|
value | (N+1)-D. Tensor of type dtype. The Tensor to split. |
lengths | 1-D. int32 vector with the lengths to use when splitting valuealong its first dimension. |
name | A name for the operation (optional). |
Returns |
---|
A new TensorArray object with flow that ensures the split occurs. Use this object for all subsequent operations. |
Raises | |
---|---|
ValueError | if the shape inference fails. |
stack
stack(
name=None
)
Return the values in the TensorArray as a stacked Tensor
.
All of the values must have been written and their shapes must all match. If input shapes have rank-R
, then output shape will have rank-(R+1)
.
For example:
ta = tf.TensorArray(tf.int32, size=3)
ta = ta.write(0, tf.constant([1, 2]))
ta = ta.write(1, tf.constant([3, 4]))
ta = ta.write(2, tf.constant([5, 6]))
ta.stack()
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[1, 2],
[3, 4],
[5, 6]], dtype=int32)>
Args | |
---|---|
name | A name for the operation (optional). |
Returns |
---|
All the tensors in the TensorArray stacked into one tensor. |
unstack
unstack(
value, name=None
)
Unstack the values of a Tensor
in the TensorArray.
If input value shapes have rank-R
, then the output TensorArray will contain elements whose shapes are rank-(R-1)
.
Args | |
---|---|
value | (N+1)-D. Tensor of type dtype. The Tensor to unstack. |
name | A name for the operation (optional). |
Returns |
---|
A new TensorArray object with flow that ensures the unstack occurs. Use this object for all subsequent operations. |
Raises | |
---|---|
ValueError | if the shape inference fails. |
write
write(
index, value, name=None
)
Write value
into index index
of the TensorArray.
Args | |
---|---|
index | 0-D. int32 scalar with the index to write to. |
value | N-D. Tensor of type dtype. The Tensor to write to this index. |
name | A name for the operation (optional). |
Returns |
---|
A new TensorArray object with flow that ensures the write occurs. Use this object for all subsequent operations. |
Raises | |
---|---|
ValueError | if there are more writers than specified. |