tf.compat.v1.boolean_mask | TensorFlow v2.16.1 (original) (raw)
tf.compat.v1.boolean_mask
Stay organized with collections Save and categorize content based on your preferences.
Apply boolean mask to tensor.
tf.compat.v1.boolean_mask(
tensor, mask, name='boolean_mask', axis=None
)
Numpy equivalent is tensor[mask]
.
In general, 0 < dim(mask) = K <= dim(tensor)
, and mask
's shape must match the first K dimensions of tensor
's shape. We then have:boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]
where (i1,...,iK)
is the ith True
entry of mask
(row-major order). The axis
could be used with mask
to indicate the axis to mask from. In that case, axis + dim(mask) <= dim(tensor)
and mask
's shape must match the first axis + dim(mask)
dimensions of tensor
's shape.
See also: tf.ragged.boolean_mask, which can be applied to both dense and ragged tensors, and can be used if you need to preserve the masked dimensions of tensor
(rather than flattening them, as tf.boolean_mask does).
Examples:
# 1-D example
tensor = [0, 1, 2, 3]
mask = np.array([True, False, True, False])
tf.boolean_mask(tensor, mask) # [0, 2]
# 2-D example
tensor = [[1, 2], [3, 4], [5, 6]]
mask = np.array([True, False, True])
tf.boolean_mask(tensor, mask) # [[1, 2], [5, 6]]
Args | |
---|---|
tensor | N-D Tensor. |
mask | K-D boolean Tensor, K <= N and K must be known statically. |
name | A name for this operation (optional). |
axis | A 0-D int Tensor representing the axis in tensor to mask from. By default, axis is 0 which will mask from the first dimension. Otherwise K + axis <= N. |
Returns |
---|
(N-K+1)-dimensional tensor populated by entries in tensor corresponding to True values in mask. |
Raises | |
---|---|
ValueError | If shapes do not conform. |