tf.compat.v1.math.log_sigmoid  |  TensorFlow v2.16.1 (original) (raw)

tf.compat.v1.math.log_sigmoid

Stay organized with collections Save and categorize content based on your preferences.

Computes log sigmoid of x element-wise.

tf.compat.v1.math.log_sigmoid(
    x, name=None
)

Specifically, y = log(1 / (1 + exp(-x))). For numerical stability, we use y = -tf.nn.softplus(-x).

Args
x A Tensor with type float32 or float64.
name A name for the operation (optional).
Returns
A Tensor with the same type as x.

Usage Example:

If a positive number is large, then its log_sigmoid will approach to 0 since the formula will be y = log( <large_num> / (1 + <large_num>) ) which approximates to log (1) which is 0.

x = tf.constant([0.0, 1.0, 50.0, 100.0]) tf.math.log_sigmoid(x) <tf.Tensor: shape=(4,), dtype=float32, numpy= array([-6.9314718e-01, -3.1326169e-01, -1.9287499e-22, -0.0000000e+00], dtype=float32)>

If a negative number is large, its log_sigmoid will approach to the number itself since the formula will be y = log( 1 / (1 + <large_num>) ) which islog (1) - log ( (1 + <large_num>) ) which approximates to - <large_num>that is the number itself.

x = tf.constant([-100.0, -50.0, -1.0, 0.0]) tf.math.log_sigmoid(x) <tf.Tensor: shape=(4,), dtype=float32, numpy= array([-100. , -50. , -1.3132616, -0.6931472], dtype=float32)>