tf.compat.v1.name_scope  |  TensorFlow v2.16.1 (original) (raw)

tf.compat.v1.name_scope

Stay organized with collections Save and categorize content based on your preferences.

A context manager for use when defining a Python op.

tf.compat.v1.name_scope(
    name, default_name=None, values=None
) -> None

This context manager validates that the given values are from the same graph, makes that graph the default graph, and pushes a name scope in that graph (seetf.Graph.name_scopefor more details on that).

For example, to define a new Python op called my_op:

def my_op(a, b, c, name=None):
  with tf.name_scope(name, "MyOp", [a, b, c]) as scope:
    a = tf.convert_to_tensor(a, name="a")
    b = tf.convert_to_tensor(b, name="b")
    c = tf.convert_to_tensor(c, name="c")
    # Define some computation that uses `a`, `b`, and `c`.
    return foo_op(..., name=scope)
Args
name The name argument that is passed to the op function.
default_name The default name to use if the name argument is None.
values The list of Tensor arguments that are passed to the op function.
Raises
TypeError if default_name is passed in but not a string.

| Attributes | | | ---------- | | | name | |

Methods

__enter__

View source

__enter__() -> Optional[str]

Return self upon entering the runtime context.

__exit__

View source

__exit__(
    *exc_info
) -> Optional[bool]

Raise any exception triggered within the runtime context.