tf.compat.v1.sparse_reduce_max | TensorFlow v2.16.1 (original) (raw)
'x' represents [[1, ?, 2]
[?, 3, ?]]
where ? is implicitly-zero.
x = tf.sparse.SparseTensor([[0, 0], [0, 2], [1, 1]], [1, 2, 3], [2, 3])
tf.sparse.reduce_max(x)
<tf.Tensor: shape=(), dtype=int32, numpy=3>
tf.sparse.reduce_max(x, 0)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 3, 2], dtype=int32)>
tf.sparse.reduce_max(x, 1)
<tf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 3], dtype=int32)>
tf.sparse.reduce_max(x, 1, keepdims=True)
<tf.Tensor: shape=(2, 1), dtype=int32, numpy=
array([[2],
[3]], dtype=int32)>
tf.sparse.reduce_max(x, [0, 1])
<tf.Tensor: shape=(), dtype=int32, numpy=3>
'y' represents [[-7, ?]
[ 4, 3]
[ ?, ?]
y = tf.sparse.SparseTensor([[0, 0,], [1, 0], [1, 1]], [-7, 4, 3],
[3, 2])
tf.sparse.reduce_max(y, 1)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([-7, 4, 0], dtype=int32)>