tf.compat.v1.zeros_like  |  TensorFlow v2.16.1 (original) (raw)

tf.compat.v1.zeros_like

Stay organized with collections Save and categorize content based on your preferences.

Creates a tensor with all elements set to zero.

tf.compat.v1.zeros_like(
    tensor, dtype=None, name=None, optimize=True
)

See also tf.zeros.

Given a single tensor (tensor), this operation returns a tensor of the same type and shape as tensor with all elements set to zero. Optionally, you can use dtype to specify a new type for the returned tensor.

Examples
>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) >>> tf.zeros_like(tensor) <tf.Tensor: shape=(2, 3), dtype=int32, numpy= array([[0, 0, 0], [0, 0, 0]], dtype=int32)> tf.zeros_like(tensor, dtype=tf.float32) <tf.Tensor: shape=(2, 3), dtype=float32, numpy= array([[0., 0., 0.], [0., 0., 0.]], dtype=float32)>
Args
tensor A Tensor.
dtype A type for the returned Tensor. Must be float16, float32,float64, int8, uint8, int16, uint16, int32, int64,complex64, complex128, bool or string. (optional)
name A name for the operation (optional).
optimize if True, attempt to statically determine the shape of tensorand encode it as a constant. (optional, defaults to True)
Returns
A Tensor with all elements set to zero.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-04-26 UTC.