tf.data.experimental.Counter  |  TensorFlow v2.16.1 (original) (raw)

tf.data.experimental.Counter

Stay organized with collections Save and categorize content based on your preferences.

Creates a Dataset that counts from start in steps of size step. (deprecated)

tf.data.experimental.Counter(
    start=0,
    step=1,
    dtype=tf.dtypes.int64
)

Used in the notebooks

Used in the guide Used in the tutorials
tf.data: Build TensorFlow input pipelines Data augmentation

Unlike tf.data.Dataset.range which will stop at some ending number,Counter will produce elements indefinitely.

dataset = tf.data.experimental.Counter().take(5) list(dataset.as_numpy_iterator()) [0, 1, 2, 3, 4] dataset.element_spec TensorSpec(shape=(), dtype=tf.int64, name=None) dataset = tf.data.experimental.Counter(dtype=tf.int32) dataset.element_spec TensorSpec(shape=(), dtype=tf.int32, name=None) dataset = tf.data.experimental.Counter(start=2).take(5) list(dataset.as_numpy_iterator()) [2, 3, 4, 5, 6] dataset = tf.data.experimental.Counter(start=2, step=5).take(5) list(dataset.as_numpy_iterator()) [2, 7, 12, 17, 22] dataset = tf.data.experimental.Counter(start=10, step=-1).take(5) list(dataset.as_numpy_iterator()) [10, 9, 8, 7, 6]

Args
start (Optional.) The starting value for the counter. Defaults to 0.
step (Optional.) The step size for the counter. Defaults to 1.
dtype (Optional.) The data type for counter elements. Defaults totf.int64.
Returns
A Dataset of scalar dtype elements.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-04-26 UTC.