tf.data.experimental.choose_from_datasets | TensorFlow v2.16.1 (original) (raw)
tf.data.experimental.choose_from_datasets
Stay organized with collections Save and categorize content based on your preferences.
Creates a dataset that deterministically chooses elements from datasets
. (deprecated)
tf.data.experimental.choose_from_datasets(
datasets, choice_dataset, stop_on_empty_dataset=False
)
For example, given the following datasets:
datasets = [tf.data.Dataset.from_tensors("foo").repeat(),
tf.data.Dataset.from_tensors("bar").repeat(),
tf.data.Dataset.from_tensors("baz").repeat()]
# Define a dataset containing `[0, 1, 2, 0, 1, 2, 0, 1, 2]`.
choice_dataset = tf.data.Dataset.range(3).repeat(3)
result = tf.data.experimental.choose_from_datasets(datasets, choice_dataset)
The elements of result
will be:
"foo", "bar", "baz", "foo", "bar", "baz", "foo", "bar", "baz"
Args | |
---|---|
datasets | A non-empty list of tf.data.Dataset objects with compatible structure. |
choice_dataset | A tf.data.Dataset of scalar tf.int64 tensors between 0and len(datasets) - 1. |
stop_on_empty_dataset | If True, selection stops if it encounters an empty dataset. If False, it skips empty datasets. It is recommended to set it to True. Otherwise, the selected elements start off as the user intends, but may change as input datasets become empty. This can be difficult to detect since the dataset starts off looking correct. Default to Falsefor backward compatibility. |
Returns |
---|
A dataset that interleaves elements from datasets according to the values of choice_dataset. |
Raises | |
---|---|
TypeError | If datasets or choice_dataset has the wrong type. |
ValueError | If datasets is empty. |