Module: tf.distribute | TensorFlow v2.16.1 (original) (raw)
Module: tf.distribute
Stay organized with collections Save and categorize content based on your preferences.
Public API for tf._api.v2.distribute namespace
Modules
cluster_resolver module: Public API for tf._api.v2.distribute.cluster_resolver namespace
coordinator module: Public API for tf._api.v2.distribute.coordinator namespace
experimental module: Public API for tf._api.v2.distribute.experimental namespace
Classes
class CrossDeviceOps: Base class for cross-device reduction and broadcasting algorithms.
class DistributedDataset: Represents a dataset distributed among devices and machines.
class DistributedIterator: An iterator over tf.distribute.DistributedDataset.
class DistributedValues: Base class for representing distributed values.
class HierarchicalCopyAllReduce: Hierarchical copy all-reduce implementation of CrossDeviceOps.
class InputContext: A class wrapping information needed by an input function.
class InputOptions: Run options for experimental_distribute_dataset(s_from_function)
.
class InputReplicationMode: Replication mode for input function.
class MirroredStrategy: Synchronous training across multiple replicas on one machine.
class MultiWorkerMirroredStrategy: A distribution strategy for synchronous training on multiple workers.
class NcclAllReduce: NCCL all-reduce implementation of CrossDeviceOps.
class OneDeviceStrategy: A distribution strategy for running on a single device.
class ParameterServerStrategy: An multi-worker tf.distribute strategy with parameter servers.
class ReduceOp: Indicates how a set of values should be reduced.
class ReductionToOneDevice: A CrossDeviceOps implementation that copies values to one device to reduce.
class ReplicaContext: A class with a collection of APIs that can be called in a replica context.
class RunOptions: Run options for strategy.run
.
class Server: An in-process TensorFlow server, for use in distributed training.
class Strategy: A state & compute distribution policy on a list of devices.
class StrategyExtended: Additional APIs for algorithms that need to be distribution-aware.
class TPUStrategy: Synchronous training on TPUs and TPU Pods.
Functions
experimental_set_strategy(...): Set a tf.distribute.Strategy as current without with strategy.scope()
.
get_replica_context(...): Returns the current tf.distribute.ReplicaContext or None
.
get_strategy(...): Returns the current tf.distribute.Strategy object.
has_strategy(...): Return if there is a current non-default tf.distribute.Strategy.
in_cross_replica_context(...): Returns True
if in a cross-replica context.