tf.keras.layers.Activation | TensorFlow v2.16.1 (original) (raw)
tf.keras.layers.Activation
Stay organized with collections Save and categorize content based on your preferences.
Applies an activation function to an output.
Inherits From: Layer, Operation
tf.keras.layers.Activation(
activation, **kwargs
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Mixed precision Ragged tensors | Basic text classification Load text Classifying CIFAR-10 with XLA TFF simulations with accelerators Parametrized Quantum Circuits for Reinforcement Learning |
Args | |
---|---|
activation | Activation function. It could be a callable, or the name of an activation from the keras.activations namespace. |
**kwargs | Base layer keyword arguments, such as name and dtype. |
Example:
layer = keras.layers.Activation('relu')
layer([-3.0, -1.0, 0.0, 2.0])
[0.0, 0.0, 0.0, 2.0]
layer = keras.layers.Activation(keras.activations.relu)
layer([-3.0, -1.0, 0.0, 2.0])
[0.0, 0.0, 0.0, 2.0]
Attributes | |
---|---|
input | Retrieves the input tensor(s) of a symbolic operation.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
output | Retrieves the output tensor(s) of a layer.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config | A Python dictionary, typically the output of get_config. |
Returns |
---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)