tf.keras.layers.Concatenate | TensorFlow v2.16.1 (original) (raw)
tf.keras.layers.Concatenate
Stay organized with collections Save and categorize content based on your preferences.
Concatenates a list of inputs.
Inherits From: Layer, Operation
tf.keras.layers.Concatenate(
axis=-1, **kwargs
)
Used in the notebooks
It takes as input a list of tensors, all of the same shape except for the concatenation axis, and returns a single tensor that is the concatenation of all inputs.
Examples:
x = np.arange(20).reshape(2, 2, 5)
y = np.arange(20, 30).reshape(2, 1, 5)
keras.layers.Concatenate(axis=1)([x, y])
Usage in a Keras model:
x1 = keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
x2 = keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
y = keras.layers.Concatenate()([x1, x2])
Args | |
---|---|
axis | Axis along which to concatenate. |
**kwargs | Standard layer keyword arguments. |
Returns |
---|
A tensor, the concatenation of the inputs alongside axis axis. |
Attributes | |
---|---|
input | Retrieves the input tensor(s) of a symbolic operation.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
output | Retrieves the output tensor(s) of a layer.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config | A Python dictionary, typically the output of get_config. |
Returns |
---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)