tf.keras.layers.HashedCrossing | TensorFlow v2.16.1 (original) (raw)
tf.keras.layers.HashedCrossing
Stay organized with collections Save and categorize content based on your preferences.
A preprocessing layer which crosses features using the "hashing trick".
Inherits From: Layer, Operation
tf.keras.layers.HashedCrossing(
num_bins,
output_mode='int',
sparse=False,
name=None,
dtype=None,
**kwargs
)
This layer performs crosses of categorical features using the "hashing trick". Conceptually, the transformation can be thought of as: `hash(concatenate(features)) % num_bins.
This layer currently only performs crosses of scalar inputs and batches of scalar inputs. Valid input shapes are (batch_size, 1)
, (batch_size,)
and()
.
Args | |
---|---|
num_bins | Number of hash bins. |
output_mode | Specification for the output of the layer. Values can be"int", or "one_hot" configuring the layer as follows: "int": Return the integer bin indices directly. "one_hot": Encodes each individual element in the input into an array the same size as num_bins, containing a 1 at the input's bin index. Defaults to "int". |
sparse | Boolean. Only applicable to "one_hot" mode and only valid when using the TensorFlow backend. If True, returns a SparseTensor instead of a dense Tensor. Defaults to False. |
**kwargs | Keyword arguments to construct a layer. |
Examples:
Crossing two scalar features.
layer = keras.layers.HashedCrossing(
num_bins=5)
feat1 = np.array(['A', 'B', 'A', 'B', 'A'])
feat2 = np.array([101, 101, 101, 102, 102])
layer((feat1, feat2))
array([1, 4, 1, 1, 3])
Crossing and one-hotting two scalar features.
layer = keras.layers.HashedCrossing(
num_bins=5, output_mode='one_hot')
feat1 = np.array(['A', 'B', 'A', 'B', 'A'])
feat2 = np.array([101, 101, 101, 102, 102])
layer((feat1, feat2))
array([[0., 1., 0., 0., 0.],
[0., 0., 0., 0., 1.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 0., 1., 0.]], dtype=float32)
Attributes | |
---|---|
input | Retrieves the input tensor(s) of a symbolic operation.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
output | Retrieves the output tensor(s) of a layer.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config | A Python dictionary, typically the output of get_config. |
Returns |
---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)