tf.keras.layers.Maximum  |  TensorFlow v2.16.1 (original) (raw)

tf.keras.layers.Maximum

Stay organized with collections Save and categorize content based on your preferences.

Computes element-wise maximum on a list of inputs.

Inherits From: Layer, Operation

tf.keras.layers.Maximum(
    **kwargs
)

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape).

Examples:

input_shape = (2, 3, 4) x1 = np.random.rand(*input_shape) x2 = np.random.rand(*input_shape) y = keras.layers.Maximum()([x1, x2])

Usage in a Keras model:

input1 = keras.layers.Input(shape=(16,)) x1 = keras.layers.Dense(8, activation='relu')(input1) input2 = keras.layers.Input(shape=(32,)) x2 = keras.layers.Dense(8, activation='relu')(input2) # equivalent to `y = keras.layers.maximum([x1, x2])` y = keras.layers.Maximum()([x1, x2]) out = keras.layers.Dense(4)(y) model = keras.models.Model(inputs=[input1, input2], outputs=out)

Attributes
input Retrieves the input tensor(s) of a symbolic operation.Only returns the tensor(s) corresponding to the _first time_the operation was called.
output Retrieves the output tensor(s) of a layer.Only returns the tensor(s) corresponding to the _first time_the operation was called.

Methods

from_config

View source

@classmethod from_config( config )

Creates a layer from its config.

This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).

Args
config A Python dictionary, typically the output of get_config.
Returns
A layer instance.

symbolic_call

View source

symbolic_call(
    *args, **kwargs
)