tf.keras.layers.ReLU  |  TensorFlow v2.16.1 (original) (raw)

tf.keras.layers.ReLU

Stay organized with collections Save and categorize content based on your preferences.

Rectified Linear Unit activation function layer.

Inherits From: Layer, Operation

tf.keras.layers.ReLU(
    max_value=None, negative_slope=0.0, threshold=0.0, **kwargs
)

Used in the notebooks

Used in the guide Used in the tutorials
Pruning for on-device inference w/ XNNPACK Sparse weights using structural pruning pix2pix: Image-to-image translation with a conditional GAN

Formula:

f(x) = max(x,0)
f(x) = max_value if x >= max_value
f(x) = x if threshold <= x < max_value
f(x) = negative_slope * (x - threshold) otherwise

Example:

relu_layer = keras.layers.activations.ReLU(
    max_value=10,
    negative_slope=0.5,
    threshold=0,
)
input = np.array([-10, -5, 0.0, 5, 10])
result = relu_layer(input)
# result = [-5. , -2.5,  0. ,  5. , 10.]
Args
max_value Float >= 0. Maximum activation value. None means unlimited. Defaults to None.
negative_slope Float >= 0. Negative slope coefficient. Defaults to 0.0.
threshold Float >= 0. Threshold value for thresholded activation. Defaults to 0.0.
**kwargs Base layer keyword arguments, such as name and dtype.
Attributes
input Retrieves the input tensor(s) of a symbolic operation.Only returns the tensor(s) corresponding to the _first time_the operation was called.
output Retrieves the output tensor(s) of a layer.Only returns the tensor(s) corresponding to the _first time_the operation was called.

Methods

from_config

View source

@classmethod from_config( config )

Creates a layer from its config.

This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).

Args
config A Python dictionary, typically the output of get_config.
Returns
A layer instance.

symbolic_call

View source

symbolic_call(
    *args, **kwargs
)