tf.keras.layers.SimpleRNNCell | TensorFlow v2.16.1 (original) (raw)
tf.keras.layers.SimpleRNNCell
Stay organized with collections Save and categorize content based on your preferences.
Cell class for SimpleRNN.
Inherits From: Layer, Operation
tf.keras.layers.SimpleRNNCell(
units,
activation='tanh',
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
seed=None,
**kwargs
)
This class processes one step within the whole time sequence input, whereaskeras.layer.SimpleRNN
processes the whole sequence.
Args | |
---|---|
units | Positive integer, dimensionality of the output space. |
activation | Activation function to use. Default: hyperbolic tangent (tanh). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x). |
use_bias | Boolean, (default True), whether the layer should use a bias vector. |
kernel_initializer | Initializer for the kernel weights matrix, used for the linear transformation of the inputs. Default:"glorot_uniform". |
recurrent_initializer | Initializer for the recurrent_kernelweights matrix, used for the linear transformation of the recurrent state. Default: "orthogonal". |
bias_initializer | Initializer for the bias vector. Default: "zeros". |
kernel_regularizer | Regularizer function applied to the kernel weights matrix. Default: None. |
recurrent_regularizer | Regularizer function applied to therecurrent_kernel weights matrix. Default: None. |
bias_regularizer | Regularizer function applied to the bias vector. Default: None. |
kernel_constraint | Constraint function applied to the kernel weights matrix. Default: None. |
recurrent_constraint | Constraint function applied to therecurrent_kernel weights matrix. Default: None. |
bias_constraint | Constraint function applied to the bias vector. Default: None. |
dropout | Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. |
recurrent_dropout | Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. |
seed | Random seed for dropout. |
Call arguments | |
---|---|
sequence | A 2D tensor, with shape (batch, features). |
states | A 2D tensor with shape (batch, units), which is the state from the previous time step. |
training | Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when dropout orrecurrent_dropout is used. |
Example:
inputs = np.random.random([32, 10, 8]).astype(np.float32)
rnn = keras.layers.RNN(keras.layers.SimpleRNNCell(4))
output = rnn(inputs) # The output has shape `(32, 4)`.
rnn = keras.layers.RNN(
keras.layers.SimpleRNNCell(4),
return_sequences=True,
return_state=True
)
# whole_sequence_output has shape `(32, 10, 4)`.
# final_state has shape `(32, 4)`.
whole_sequence_output, final_state = rnn(inputs)
Attributes | |
---|---|
input | Retrieves the input tensor(s) of a symbolic operation.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
output | Retrieves the output tensor(s) of a layer.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config | A Python dictionary, typically the output of get_config. |
Returns |
---|
A layer instance. |
get_dropout_mask
get_dropout_mask(
step_input
)
get_initial_state
get_initial_state(
batch_size=None
)
get_recurrent_dropout_mask
get_recurrent_dropout_mask(
step_input
)
reset_dropout_mask
reset_dropout_mask()
Reset the cached dropout mask if any.
The RNN layer invokes this in the call()
method so that the cached mask is cleared after calling cell.call()
. The mask should be cached across all timestep within the same batch, but shouldn't be cached between batches.
reset_recurrent_dropout_mask
reset_recurrent_dropout_mask()
symbolic_call
symbolic_call(
*args, **kwargs
)