tf.keras.random.SeedGenerator | TensorFlow v2.16.1 (original) (raw)
Generates variable seeds upon each call to a RNG-using function.
tf.keras.random.SeedGenerator(
seed=None, name=None, **kwargs
)
In Keras, all RNG-using methods (such as keras.random.normal()) are stateless, meaning that if you pass an integer seed to them (such as seed=42
), they will return the same values at each call. In order to get different values at each call, you must use aSeedGenerator
instead as the seed argument. The SeedGenerator
object is stateful.
Example:
seed_gen = keras.random.SeedGenerator(seed=42)
values = keras.random.normal(shape=(2, 3), seed=seed_gen)
new_values = keras.random.normal(shape=(2, 3), seed=seed_gen)
Usage in a layer:
class Dropout(keras.Layer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.seed_generator = keras.random.SeedGenerator(1337)
def call(self, x, training=False):
if training:
return keras.random.dropout(
x, rate=0.5, seed=self.seed_generator
)
return x
Methods
from_config
@classmethod
from_config( config )
get_config
get_config()
next
next(
ordered=True
)