tf.keras.utils.split_dataset  |  TensorFlow v2.16.1 (original) (raw)

tf.keras.utils.split_dataset

Splits a dataset into a left half and a right half (e.g. train / test).

tf.keras.utils.split_dataset(
    dataset, left_size=None, right_size=None, shuffle=False, seed=None
)
Args
dataset A tf.data.Dataset, a torch.utils.data.Dataset object, or a list/tuple of arrays with the same length.
left_size If float (in the range [0, 1]), it signifies the fraction of the data to pack in the left dataset. If integer, it signifies the number of samples to pack in the left dataset. IfNone, defaults to the complement to right_size. Defaults to None.
right_size If float (in the range [0, 1]), it signifies the fraction of the data to pack in the right dataset. If integer, it signifies the number of samples to pack in the right dataset. If None, defaults to the complement to left_size. Defaults to None.
shuffle Boolean, whether to shuffle the data before splitting it.
seed A random seed for shuffling.
Returns
A tuple of two tf.data.Dataset objects: the left and right splits.

Example:

data = np.random.random(size=(1000, 4)) left_ds, right_ds = keras.utils.split_dataset(data, left_size=0.8) int(left_ds.cardinality()) 800 int(right_ds.cardinality()) 200

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-06-07 UTC.