tf.nn.gelu  |  TensorFlow v2.16.1 (original) (raw)

tf.nn.gelu

Stay organized with collections Save and categorize content based on your preferences.

Compute the Gaussian Error Linear Unit (GELU) activation function.

tf.nn.gelu(
    features, approximate=False, name=None
)

Gaussian error linear unit (GELU) computesx * P(X <= x), where P(X) ~ N(0, 1). The (GELU) nonlinearity weights inputs by their value, rather than gates inputs by their sign as in ReLU.

For example:

x = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype=tf.float32) y = tf.nn.gelu(x) y.numpy() array([-0.00404951, -0.15865529, 0. , 0.8413447 , 2.9959507 ], dtype=float32) y = tf.nn.gelu(x, approximate=True) y.numpy() array([-0.00363752, -0.15880796, 0. , 0.841192 , 2.9963627 ], dtype=float32)

Args
features A float Tensor representing preactivation values.
approximate An optional bool. Defaults to False. Whether to enable approximation.
name A name for the operation (optional).
Returns
A Tensor with the same type as features.
Raises
ValueError if features is not a floating point Tensor.
References
Gaussian Error Linear Units (GELUs).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-04-26 UTC.