tf.sparse.reduce_sum | TensorFlow v2.16.1 (original) (raw)
Computes tf.sparse.add of elements across dimensions of a SparseTensor.
tf.sparse.reduce_sum(
sp_input, axis=None, keepdims=None, output_is_sparse=False, name=None
)
Used in the notebooks
Used in the tutorials |
---|
Client-efficient large-model federated learning via `federated_select` and sparse aggregation |
This is the reduction operation for the elementwise tf.sparse.add op.
This Op takes a SparseTensor and is the sparse counterpart totf.reduce_sum(). In particular, this Op also returns a dense Tensor
if output_is_sparse
is False
, or a SparseTensor
if output_is_sparse
is True
.
Reduces sp_input
along the dimensions given in axis
. Unless keepdims
is true, the rank of the tensor is reduced by 1 for each entry in axis
. Ifkeepdims
is true, the reduced dimensions are retained with length 1.
If axis
has no entries, all dimensions are reduced, and a tensor with a single element is returned. Additionally, the axes can be negative, similar to the indexing rules in Python.
For example |
---|
'x' represents [[1, ?, 1] where ? is implicitly-zero. x = tf.sparse.SparseTensor([[0, 0], [0, 2], [1, 1]], [1, 1, 1], [2, 3]) tf.sparse.reduce_sum(x) <tf.Tensor: shape=(), dtype=int32, numpy=3> tf.sparse.reduce_sum(x, 0) <tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 1, 1], dtype=int32)> tf.sparse.reduce_sum(x, 1) # Can also use -1 as the axis <tf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 1], dtype=int32)> tf.sparse.reduce_sum(x, 1, keepdims=True) <tf.Tensor: shape=(2, 1), dtype=int32, numpy= array([[2], [1]], dtype=int32)> tf.sparse.reduce_sum(x, [0, 1]) <tf.Tensor: shape=(), dtype=int32, numpy=3> |
Args | |
---|---|
sp_input | The SparseTensor to reduce. Should have numeric type. |
axis | The dimensions to reduce; list or scalar. If None (the default), reduces all dimensions. |
keepdims | If true, retain reduced dimensions with length 1. |
output_is_sparse | If true, returns a SparseTensor instead of a denseTensor (the default). |
name | A name for the operation (optional). |
Returns |
---|
The reduced Tensor or the reduced SparseTensor if output_is_sparse is True. |