tf.train.TrackableView  |  TensorFlow v2.16.1 (original) (raw)

tf.train.TrackableView

Stay organized with collections Save and categorize content based on your preferences.

Gathers and serializes a trackable view.

tf.train.TrackableView(
    root
)

Example usage:

class SimpleModule(tf.Module): def __init__(self, name=None): super().__init__(name=name) self.a_var = tf.Variable(5.0) self.b_var = tf.Variable(4.0) self.vars = [tf.Variable(1.0), tf.Variable(2.0)]

root = SimpleModule(name="root") root.leaf = SimpleModule(name="leaf") trackable_view = tf.train.TrackableView(root)

Pass root to tf.train.TrackableView.children() to get the dictionary of all children directly linked to root by name.

>>> trackable_view_children = trackable_view.children(root)
>>> for item in trackable_view_children.items():
...   print(item)
('a_var', <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=5.0>)
('b_var', <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=4.0>)
('vars', ListWrapper([<tf.Variable 'Variable:0' shape=() dtype=float32,
numpy=1.0>, <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=2.0>]))
('leaf', ...)
Args
root A Trackable object whose variables (including the variables of dependencies, recursively) should be saved. May be a weak reference.

| Attributes | | | ---------- | | | root | |

Methods

children

View source

@classmethod children( obj, save_type=base.SaveType.CHECKPOINT, **kwargs )

Returns all child trackables attached to obj.

Args
obj A Trackable object.
save_type A string, can be 'savedmodel' or 'checkpoint'.
**kwargs kwargs to use when retrieving the object's children.
Returns
Dictionary of all children attached to the object with name to trackable.

descendants

View source

descendants()

Returns a list of all nodes from self.root using a breadth first traversal.