tff.learning.templates.build_functional_model_delta_client_work | TensorFlow Federated (original) (raw)
tff.learning.templates.build_functional_model_delta_client_work
Creates a ClientWorkProcess
for federated averaging.
tff.learning.templates.build_functional_model_delta_client_work(
*,
model: tff.learning.models.FunctionalModel,
optimizer: tff.learning.optimizers.Optimizer,
client_weighting: tff.learning.ClientWeighting,
metrics_aggregator: Optional[tff.learning.metrics.MetricsAggregatorType] = None,
loop_implementation: tff.learning.LoopImplementation = tff.learning.LoopImplementation.DATASET_REDUCE
) -> tff.learning.templates.ClientWorkProcess
This differs from tff.learning.templates.build_model_delta_client_work in that it only accepts tff.learning.models.FunctionalModel andtff.learning.optimizers.Optimizer type arguments, resulting in TensorFlow graphs that do not contain tf.Variable operations.
Args | |
---|---|
model | A tff.learning.models.FunctionalModel to train. |
optimizer | A tff.learning.optimizers.Optimizer to use for local, on-client optimization. |
client_weighting | A tff.learning.ClientWeighting value. |
metrics_aggregator | A function that takes in the metric finalizers (i.e.,tff.learning.models.VariableModel.metric_finalizers()) and returns atff.Computation for aggregating the unfinalized metrics. If None, this is set to tff.learning.metrics.sum_then_finalize. |
loop_implementation | Changes the implementation of the training loop generated. See tff.learning.LoopImplementation for more details. |
Returns |
---|
A ClientWorkProcess. |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-20 UTC.