tfp.distributions.LinearGaussianStateSpaceModel | TensorFlow Probability (original) (raw)
Observation distribution from a linear Gaussian state space model.
Inherits From: AutoCompositeTensorDistribution, Distribution, AutoCompositeTensor
tfp.distributions.LinearGaussianStateSpaceModel(
num_timesteps,
transition_matrix,
transition_noise,
observation_matrix,
observation_noise,
initial_state_prior,
initial_step=0,
mask=None,
experimental_parallelize=False,
validate_args=False,
allow_nan_stats=True,
name='LinearGaussianStateSpaceModel'
)
A linear Gaussian state space model, sometimes called a Kalman filter, posits a latent state vector z[t]
of dimension latent_size
that evolves over time following linear Gaussian transitions,
z[t+1] = F * z[t] + N(b; Q) # latent state
x[t] = H * z[t] + N(c; R) # observed series
for transition matrix F
, transition bias b
and covariance matrixQ
, and observation matrix H
, bias c
and covariance matrix R
. At each timestep, the model generates an observable vector x[t]
, a noisy projection of the latent state. The transition and observation models may be fixed or may vary between timesteps.
This Distribution represents the marginal distribution on observations, p(x)
. The marginal log_prob
is implemented by Kalman filtering [1], and sample
by an efficient forward recursion. Both operations require time linear in T
, the total number of timesteps.
Shapes
The event shape is [num_timesteps, observation_size]
, whereobservation_size
is the dimension of each observation x[t]
. The observation and transition models must return consistent shapes.
This implementation supports vectorized computation over a batch of models. All of the parameters (prior distribution, transition and observation operators and noise models) must have a consistent batch shape.
Time-varying processes
Any of the model-defining parameters (prior distribution, transition and observation operators and noise models) may be specified as a callable taking an integer timestep t
and returning a time-dependent value. The dimensionality (latent_size
andobservation_size
) must be the same at all timesteps.
Importantly, the timestep is passed as a Tensor
, not a Python integer, so any conditional behavior must occur inside the TensorFlow graph. For example, suppose we want to use a different transition model on even days than odd days. It does not work to write
def transition_matrix(t):
if t % 2 == 0:
return even_day_matrix
else:
return odd_day_matrix
since the value of t
is not fixed at graph-construction time. Instead we need to write
def transition_matrix(t):
return tf.cond(tf.equal(tf.mod(t, 2), 0),
lambda : even_day_matrix,
lambda : odd_day_matrix)
so that TensorFlow can switch between operators appropriately at runtime.
Examples
Consider a simple tracking model, in which a two-dimensional latent state represents the position of a vehicle, and at each timestep we see a noisy observation of this position (e.g., a GPS reading). The vehicle is assumed to move by a random walk with standard deviationstep_std
at each step, and observation noise level std
. We build the marginal distribution over noisy observations as a state space model:
tfd = tfp.distributions
ndims = 2
step_std = 1.0
noise_std = 5.0
model = tfd.LinearGaussianStateSpaceModel(
num_timesteps=100,
transition_matrix=tf.linalg.LinearOperatorIdentity(ndims),
transition_noise=tfd.MultivariateNormalDiag(
scale_diag=step_std**2 * tf.ones([ndims])),
observation_matrix=tf.linalg.LinearOperatorIdentity(ndims),
observation_noise=tfd.MultivariateNormalDiag(
scale_diag=noise_std**2 * tf.ones([ndims])),
initial_state_prior=tfd.MultivariateNormalDiag(
scale_diag=tf.ones([ndims])))
using the identity matrix for the transition and observation operators. We can then use this model to generate samples, compute marginal likelihood of observed sequences, and perform posterior inference.
x = model.sample(5) # Sample from the prior on sequences of observations.
lp = model.log_prob(x) # Marginal likelihood of a (batch of) observations.
# Compute the filtered posterior on latent states given observations,
# and extract the mean and covariance for the current (final) timestep.
_, filtered_means, filtered_covs, _, _, _, _ = model.forward_filter(x)
current_location_posterior = tfd.MultivariateNormalTriL(
loc=filtered_means[..., -1, :],
scale_tril=tf.linalg.cholesky(filtered_covs[..., -1, :, :]))
# Run a smoothing recursion to extract posterior marginals for locations
# at previous timesteps.
posterior_means, posterior_covs = model.posterior_marginals(x)
initial_location_posterior = tfd.MultivariateNormalTriL(
loc=posterior_means[..., 0, :],
scale_tril=tf.linalg.cholesky(posterior_covs[..., 0, :, :]))
*
Args | |
---|---|
num_timesteps | Integer Tensor total number of timesteps. |
transition_matrix | A transition operator, represented by a Tensor or LinearOperator of shape [latent_size, latent_size], or by a callable taking as argument a scalar integer Tensor t and returning a Tensor or LinearOperator representing the transition operator from latent state at time t to time t + 1. |
transition_noise | An instance oftfd.MultivariateNormalLinearOperator with event shape[latent_size], representing the mean and covariance of the transition noise model, or a callable taking as argument a scalar integer Tensor t and returning such a distribution representing the noise in the transition from time t to time t + 1. |
observation_matrix | An observation operator, represented by a Tensor or LinearOperator of shape [observation_size, latent_size], or by a callable taking as argument a scalar integer Tensort and returning a timestep-specific Tensor or LinearOperator. |
observation_noise | An instance oftfd.MultivariateNormalLinearOperator with event shape[observation_size], representing the mean and covariance of the observation noise model, or a callable taking as argument a scalar integer Tensor t and returning a timestep-specific noise model. |
initial_state_prior | An instance of MultivariateNormalLinearOperatorrepresenting the prior distribution on latent states; must have event shape [latent_size]. |
initial_step | optional int specifying the time of the first modeled timestep. This is added as an offset when passing timesteps t to (optional) callables specifying timestep-specific transition and observation models. |
mask | Optional default missingness mask used for density and posterior inference calculations (any method that takes a mask argument). Bool-type Tensor with rightmost dimension[num_timesteps]; True values specify that the value of xat that timestep is masked, i.e., not conditioned on. Default value: None. |
experimental_parallelize | If True, use parallel message passing algorithms from tfp.experimental.parallel_filter to perform operations in O(log num_timesteps) sequential steps. The overall FLOP and memory cost may be larger than for the sequential implementations, though only by a constant factor. Default value: False. |
validate_args | Python bool, default False. Whether to validate input with asserts. If validate_args is False, and the inputs are invalid, correct behavior is not guaranteed. |
allow_nan_stats | Python bool, default True. If False, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member If True, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. |
name | The name to give Ops created by the initializer. |
Attributes | |
---|---|
allow_nan_stats | Python bool describing behavior when a stat is undefined.Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. |
batch_shape | Shape of a single sample from a single event index as a TensorShape.May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. |
dtype | The DType of Tensors handled by this Distribution. |
event_shape | Shape of a single sample from a single batch as a TensorShape.May be partially defined or unknown. |
experimental_parallelize | |
experimental_shard_axis_names | The list or structure of lists of active shard axis names. |
initial_state_prior | |
initial_step | |
mask | |
name | Name prepended to all ops created by this Distribution. |
name_scope | Returns a tf.name_scope instance for this class. |
non_trainable_variables | Sequence of non-trainable variables owned by this module and its submodules. |
num_timesteps | |
observation_matrix | |
observation_noise | |
parameters | Dictionary of parameters used to instantiate this Distribution. |
reparameterization_type | Describes how samples from the distribution are reparameterized.Currently this is one of the static instancestfd.FULLY_REPARAMETERIZED or tfd.NOT_REPARAMETERIZED. |
submodules | Sequence of all sub-modules.Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on). a = tf.Module() b = tf.Module() c = tf.Module() a.b = b b.c = c list(a.submodules) == [b, c] True list(b.submodules) == [c] True list(c.submodules) == [] True |
trainable_variables | Sequence of trainable variables owned by this module and its submodules. |
transition_matrix | |
transition_noise | |
validate_args | Python bool indicating possibly expensive checks are enabled. |
variables | Sequence of variables owned by this module and its submodules. |
Methods
backward_smoothing_pass
backward_smoothing_pass(
filtered_means, filtered_covs, predicted_means, predicted_covs
)
Run the backward pass in Kalman smoother.
The backward smoothing is using Rauch, Tung and Striebel smoother as as discussed in section 18.3.2 of Kevin P. Murphy, 2012, Machine Learning: A Probabilistic Perspective, The MIT Press. The inputs are returned byforward_filter
function.
Args | |
---|---|
filtered_means | Means of the per-timestep filtered marginal distributions p(z[t] | x[:t]), as a Tensor of shapesample_shape(x) + batch_shape + [num_timesteps, latent_size]. |
filtered_covs | Covariances of the per-timestep filtered marginal distributions p(z[t] | x[:t]), as a Tensor of shapesample_shape(x) + batch_shape + [num_timesteps, latent_size, latent_size]. |
predicted_means | Means of the per-timestep predictive distributions over latent states, p(z[t+1] | x[:t]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size]. |
predicted_covs | Covariances of the per-timestep predictive distributions over latent states, p(z[t+1] | x[:t]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size, latent_size]. |
Returns | |
---|---|
posterior_means | Means of the smoothed marginal distributions p(z[t] | x[1:T]), as a Tensor of shapesample_shape(x) + batch_shape + [num_timesteps, latent_size], which is of the same shape as filtered_means. |
posterior_covs | Covariances of the smoothed marginal distributions p(z[t] | x[1:T]), as a Tensor of shapesample_shape(x) + batch_shape + [num_timesteps, latent_size, latent_size]. which is of the same shape as filtered_covs. |
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args | |
---|---|
name | name to give to the op |
Returns | |
---|---|
batch_shape | Tensor. |
cdf
cdf(
value, name='cdf', **kwargs
)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
cdf | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
copy
copy(
**override_parameters_kwargs
)
Creates a deep copy of the distribution.
Args | |
---|---|
**override_parameters_kwargs | String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
distribution | A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e.,dict(self.parameters, **override_parameters_kwargs). |
covariance
covariance(
name='covariance', **kwargs
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance
shall return a (batch of) matrices under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices,0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function mapping indices of this distribution's event dimensions to indices of a length-k'
vector.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
covariance | Floating-point Tensor with shape [B1, ..., Bn, k', k']where the first n dimensions are batch coordinates andk' = reduce_prod(self.event_shape). |
cross_entropy
cross_entropy(
other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution byQ
. Assuming P, Q
are absolutely continuous with respect to one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shannon) cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args | |
---|---|
other | tfp.distributions.Distribution instance. |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
cross_entropy | self.dtype Tensor with shape [B1, ..., Bn]representing n different calculations of (Shannon) cross entropy. |
entropy
entropy(
name='entropy', **kwargs
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
Args | |
---|---|
name | name to give to the op |
Returns | |
---|---|
event_shape | Tensor. |
experimental_default_event_space_bijector
experimental_default_event_space_bijector(
*args, **kwargs
)
Bijector mapping the reals (R**n) to the event space of the distribution.
Distributions with continuous support may implement_default_event_space_bijector
which returns a subclass oftfp.bijectors.Bijector that maps R**n to the distribution's event space. For example, the default bijector for the Beta
distribution is tfp.bijectors.Sigmoid(), which maps the real line to [0, 1]
, the support of the Beta
distribution. The default bijector for theCholeskyLKJ
distribution is tfp.bijectors.CorrelationCholesky, which maps R^(k * (k-1) // 2) to the submanifold of k x k lower triangular matrices with ones along the diagonal.
The purpose of experimental_default_event_space_bijector
is to enable gradient descent in an unconstrained space for Variational Inference and Hamiltonian Monte Carlo methods. Some effort has been made to choose bijectors such that the tails of the distribution in the unconstrained space are between Gaussian and Exponential.
For distributions with discrete event space, or for which TFP currently lacks a suitable bijector, this function returns None
.
Args | |
---|---|
*args | Passed to implementation _default_event_space_bijector. |
**kwargs | Passed to implementation _default_event_space_bijector. |
Returns | |
---|---|
event_space_bijector | Bijector instance or None. |
experimental_fit
@classmethod
experimental_fit( value, sample_ndims=1, validate_args=False, **init_kwargs )
Instantiates a distribution that maximizes the likelihood of x
.
Args | |
---|---|
value | a Tensor valid sample from this distribution family. |
sample_ndims | Positive int Tensor number of leftmost dimensions ofvalue that index i.i.d. samples. Default value: 1. |
validate_args | Python bool, default False. When True, distribution parameters are checked for validity despite possibly degrading runtime performance. When False, invalid inputs may silently render incorrect outputs. Default value: False. |
**init_kwargs | Additional keyword arguments passed through tocls.__init__. These take precedence in case of collision with the fitted parameters; for example,tfd.Normal.experimental_fit([1., 1.], scale=20.) returns a Normal distribution with scale=20. rather than the maximum likelihood parameter scale=0.. |
Returns | |
---|---|
maximum_likelihood_instance | instance of cls with parameters that maximize the likelihood of value. |
experimental_local_measure
experimental_local_measure(
value, backward_compat=False, **kwargs
)
Returns a log probability density together with a TangentSpace
.
A TangentSpace
allows us to calculate the correct push-forward density when we apply a transformation to a Distribution
on a strict submanifold of R^n (typically via a Bijector
in theTransformedDistribution
subclass). The density correction uses the basis of the tangent space.
Args | |
---|---|
value | float or double Tensor. |
backward_compat | bool specifying whether to fall back to returningFullSpace as the tangent space, and representing R^n with the standard basis. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
log_prob | a Tensor representing the log probability density, of shapesample_shape(x) + self.batch_shape with values of type self.dtype. |
tangent_space | a TangentSpace object (by default FullSpace) representing the tangent space to the manifold at value. |
Raises |
---|
UnspecifiedTangentSpaceError if backward_compat is False and the _experimental_tangent_space attribute has not been defined. |
experimental_sample_and_log_prob
experimental_sample_and_log_prob(
sample_shape=(), seed=None, name='sample_and_log_prob', **kwargs
)
Samples from this distribution and returns the log density of the sample.
The default implementation simply calls sample
and log_prob
:
def _sample_and_log_prob(self, sample_shape, seed, **kwargs):
x = self.sample(sample_shape=sample_shape, seed=seed, **kwargs)
return x, self.log_prob(x, **kwargs)
However, some subclasses may provide more efficient and/or numerically stable implementations.
Args | |
---|---|
sample_shape | integer Tensor desired shape of samples to draw. Default value: (). |
seed | PRNG seed; see tfp.random.sanitize_seed for details. Default value: None. |
name | name to give to the op. Default value: 'sample_and_log_prob'. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
samples | a Tensor, or structure of Tensors, with prepended dimensionssample_shape. |
log_prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
forward_filter
forward_filter(
x, mask=None, final_step_only=False
)
Run a Kalman filter over a provided sequence of outputs.
Note that the returned values filtered_means
, predicted_means
, andobservation_means
depend on the observed time series x
, while the corresponding covariances are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shapeconcat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]])
, while the covariances have shapeconcat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]])
, which does not depend on the sample shape.
Args | |
---|---|
x | a float-type Tensor with rightmost dimensions[num_timesteps, observation_size] matchingself.event_shape. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions are interpreted as a sample shape. |
mask | optional bool-type Tensor with rightmost dimension[num_timesteps]; True values specify that the value of xat that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions must match or be broadcastable to the sample shape of x. Default value: None (falls back to self.mask). |
final_step_only | optional Python bool. If True, the num_timestepsdimension is omitted from all return values and only the value from the final timestep is returned (in this case, log_likelihoods will be the cumulative log marginal likelihood). This may be significantly more efficient than returning all values (although note that no efficiency gain is expected when self.experimental_parallelize=True). Default value: False. |
Returns | |
---|---|
log_likelihoods | Per-timestep log marginal likelihoods log p(x[t] | x[:t-1]) evaluated at the input x, as a Tensorof shape sample_shape(x) + batch_shape + [num_timesteps].If final_step_only is True, this will instead be the_cumulative_ log marginal likelihood at the final step. |
filtered_means | Means of the per-timestep filtered marginal distributions p(z[t] | x[:t]), as a Tensor of shapesample_shape(x) + batch_shape + [num_timesteps, latent_size]. |
filtered_covs | Covariances of the per-timestep filtered marginal distributions p(z[t] | x[:t]), as a Tensor of shapesample_shape(x) + batch_shape + [num_timesteps, latent_size, latent_size]. Since posterior covariances do not depend on observed data, some implementations may return a Tensor whose shape omits the initial sample_shape(x). |
predicted_means | Means of the per-timestep predictive distributions over latent states, p(z[t+1] | x[:t]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size]. |
predicted_covs | Covariances of the per-timestep predictive distributions over latent states, p(z[t+1] | x[:t]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size, latent_size]. Since posterior covariances do not depend on observed data, some implementations may return a Tensor whose shape omits the initial sample_shape(x). |
observation_means | Means of the per-timestep predictive distributions over observations, p(x[t] | x[:t-1]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, observation_size]. |
observation_covs | Covariances of the per-timestep predictive distributions over observations, p(x[t] | x[:t-1]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, observation_size, observation_size]. Since posterior covariances do not depend on observed data, some implementations may return a Tensor whose shape omits the initial sample_shape(x). |
is_scalar_batch
is_scalar_batch(
name='is_scalar_batch'
)
Indicates that batch_shape == []
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
is_scalar_batch | bool scalar Tensor. |
is_scalar_event
is_scalar_event(
name='is_scalar_event'
)
Indicates that event_shape == []
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
is_scalar_event | bool scalar Tensor. |
kl_divergence
kl_divergence(
other, name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution byq
. Assuming p, q
are absolutely continuous with respect to reference measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shannon) cross entropy, and H[.]
denotes (Shannon) entropy.
Args | |
---|---|
other | tfp.distributions.Distribution instance. |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
kl_divergence | self.dtype Tensor with shape [B1, ..., Bn]representing n different calculations of the Kullback-Leibler divergence. |
latent_size_tensor
latent_size_tensor()
latents_to_observations
latents_to_observations(
latent_means, latent_covs
)
Push latent means and covariances forward through the observation model.
Args | |
---|---|
latent_means | float Tensor of shape [..., num_timesteps, latent_size] |
latent_covs | float Tensor of shape[..., num_timesteps, latent_size, latent_size]. |
Returns | |
---|---|
observation_means | float Tensor of shape[..., num_timesteps, observation_size] |
observation_covs | float Tensor of shape[..., num_timesteps, observation_size, observation_size] |
log_cdf
log_cdf(
value, name='log_cdf', **kwargs
)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields a more accurate answer than simply taking the logarithm of the cdf
whenx << -1
.
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
logcdf | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
log_prob
log_prob(
value, name='log_prob', **kwargs
)
Log probability density/mass function.
Additional documentation from LinearGaussianStateSpaceModel
:
kwargs
:
mask
: optional bool-typeTensor
with rightmost dimension[num_timesteps]
;True
values specify that the value ofx
at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable toself.batch_shape
; any further dimensions must match or be broadcastable to the sample shape ofx
. Default value:None
(falls back toself.mask
).
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
log_prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
log_survival_function
log_survival_function(
value, name='log_survival_function', **kwargs
)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns |
---|
Tensor of shape sample_shape(x) + self.batch_shape with values of typeself.dtype. |
mean
mean(
name='mean', **kwargs
)
Mean.
mode
mode(
name='mode', **kwargs
)
Mode.
observation_size_tensor
observation_size_tensor()
param_shapes
@classmethod
param_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
. (deprecated)
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
Args | |
---|---|
sample_shape | Tensor or python list/tuple. Desired shape of a call tosample(). |
name | name to prepend ops with. |
Returns |
---|
dict of parameter name to Tensor shapes. |
param_static_shapes
@classmethod
param_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape
) shapes. (deprecated)
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
. Assumes that the sample's shape is known statically.
Subclasses should override class method _param_shapes
to return constant-valued tensors when constant values are fed.
Args | |
---|---|
sample_shape | TensorShape or python list/tuple. Desired shape of a call to sample(). |
Returns |
---|
dict of parameter name to TensorShape. |
Raises | |
---|---|
ValueError | if sample_shape is a TensorShape and is not fully defined. |
parameter_properties
@classmethod
parameter_properties( dtype=tf.float32, num_classes=None )
Returns a dict mapping constructor arg names to property annotations.
This dict should include an entry for each of the distribution'sTensor
-valued constructor arguments.
Distribution subclasses are not required to implement_parameter_properties
, so this method may raise NotImplementedError
. Providing a _parameter_properties
implementation enables several advanced features, including:
- Distribution batch slicing (
sliced_distribution = distribution[i:j]
). - Automatic inference of
_batch_shape
and_batch_shape_tensor
, which must otherwise be computed explicitly. - Automatic instantiation of the distribution within TFP's internal property tests.
- Automatic construction of 'trainable' instances of the distribution using appropriate bijectors to avoid violating parameter constraints. This enables the distribution family to be used easily as a surrogate posterior in variational inference.
In the future, parameter property annotations may enable additional functionality; for example, returning Distribution instances fromtf.vectorized_map.
Args | |
---|---|
dtype | Optional float dtype to assume for continuous-valued parameters. Some constraining bijectors require advance knowledge of the dtype because certain constants (e.g., tfb.Softplus.low) must be instantiated with the same dtype as the values to be transformed. |
num_classes | Optional int Tensor number of classes to assume when inferring the shape of parameters for categorical-like distributions. Otherwise ignored. |
Returns | |
---|---|
parameter_properties | Astr ->tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names toParameterProperties` instances. |
Raises | |
---|---|
NotImplementedError | if the distribution class does not implement_parameter_properties. |
posterior_marginals
posterior_marginals(
x, mask=None
)
Run a Kalman smoother to return posterior mean and cov.
Note that the returned values smoothed_means
depend on the observed time series x
, while the smoothed_covs
are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]])
, while the covariances have shape concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]])
, which does not depend on the sample shape.
This function only performs smoothing. If the user wants the intermediate values, which are returned by filtering pass forward_filter
, one could get it by:
(log_likelihoods,
filtered_means, filtered_covs,
predicted_means, predicted_covs,
observation_means, observation_covs) = model.forward_filter(x)
smoothed_means, smoothed_covs = model.backward_smoothing_pass(
filtered_means, filtered_covs,
predicted_means, predicted_covs)
where x
is an observation sequence.
Args | |
---|---|
x | a float-type Tensor with rightmost dimensions[num_timesteps, observation_size] matchingself.event_shape. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions are interpreted as a sample shape. |
mask | optional bool-type Tensor with rightmost dimension[num_timesteps]; True values specify that the value of xat that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions must match or be broadcastable to the sample shape of x. Default value: None (falls back to self.mask). |
Returns | |
---|---|
smoothed_means | Means of the per-timestep smoothed distributions over latent states, p(z[t] | x[:T]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, observation_size]. |
smoothed_covs | Covariances of the per-timestep smoothed distributions over latent states, p(z[t] | x[:T]), as a Tensor of shape sample_shape(mask) + batch_shape + [num_timesteps, observation_size, observation_size]. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than filtered_means. |
posterior_sample
posterior_sample(
x, sample_shape=(), mask=None, seed=None, name=None
)
Draws samples from the posterior over latent trajectories.
This method uses Durbin-Koopman sampling [1], an efficient algorithm to sample from the posterior latents of a linear Gaussian state space model. The cost of drawing a sample is equal to the cost of drawing a prior sample (.sample(sample_shape)
), plus the cost of Kalman smoothing (.posterior_marginals(...)
on both the observed time series and the prior sample. This method is significantly more efficient in graph mode, because it uses only the posterior means and can elide the unneeded calculation of marginal covariances.
[1] Durbin, J. and Koopman, S.J. A simple and efficient simulation smoother for state space time series analysis. Biometrika 89(3):603-615, 2002. https://www.jstor.org/stable/4140605
Args | |
---|---|
x | a float-type Tensor with rightmost dimensions[num_timesteps, observation_size] matchingself.event_shape. Additional dimensions must match or be broadcastable with self.batch_shape. |
sample_shape | int Tensor shape of samples to draw. Default value: (). |
mask | optional bool-type Tensor with rightmost dimension[num_timesteps]; True values specify that the value of xat that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable with self.batch_shape andx.shape[:-2]. Default value: None (falls back to self.mask). |
seed | PRNG seed; see tfp.random.sanitize_seed for details. |
name | Python str name for ops generated by this method. |
Returns | |
---|---|
latent_posterior_sample | Float Tensor of shapeconcat([sample_shape, batch_shape, [num_timesteps, latent_size]]), where batch_shape is the broadcast shape of self.batch_shape,x.shape[:-2], and mask.shape[:-1], representing n samples from the posterior over latent states given the observed value x. |
prob
prob(
value, name='prob', **kwargs
)
Probability density/mass function.
Additional documentation from LinearGaussianStateSpaceModel
:
kwargs
:
mask
: optional bool-typeTensor
with rightmost dimension[num_timesteps]
;True
values specify that the value ofx
at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable toself.batch_shape
; any further dimensions must match or be broadcastable to the sample shape ofx
. Default value:None
(falls back toself.mask
).
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
quantile
quantile(
value, name='quantile', **kwargs
)
Quantile function. Aka 'inverse cdf' or 'percent point function'.
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
quantile | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
sample
sample(
sample_shape=(), seed=None, name='sample', **kwargs
)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single sample.
Args | |
---|---|
sample_shape | 0D or 1D int32 Tensor. Shape of the generated samples. |
seed | PRNG seed; see tfp.random.sanitize_seed for details. |
name | name to give to the op. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
samples | a Tensor with prepended dimensions sample_shape. |
stddev
stddev(
name='stddev', **kwargs
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
stddev | Floating-point Tensor with shape identical tobatch_shape + event_shape, i.e., the same shape as self.mean(). |
survival_function
survival_function(
value, name='survival_function', **kwargs
)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns |
---|
Tensor of shape sample_shape(x) + self.batch_shape with values of typeself.dtype. |
unnormalized_log_prob
unnormalized_log_prob(
value, name='unnormalized_log_prob', **kwargs
)
Potentially unnormalized log probability density/mass function.
This function is similar to log_prob
, but does not require that the return value be normalized. (Normalization here refers to the total integral of probability being one, as it should be by definition for any probability distribution.) This is useful, for example, for distributions where the normalization constant is difficult or expensive to compute. By default, this simply calls log_prob
.
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
unnormalized_log_prob | a Tensor of shapesample_shape(x) + self.batch_shape with values of type self.dtype. |
variance
variance(
name='variance', **kwargs
)
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
variance | Floating-point Tensor with shape identical tobatch_shape + event_shape, i.e., the same shape as self.mean(). |
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method | The method to wrap. |
Returns |
---|
The original method wrapped such that it enters the module's name scope. |
__getitem__
__getitem__(
slices
)
Slices the batch axes of this distribution, returning a new instance.
b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape # => [3, 1, 5, 2, 4]
x = tf.random.normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.linalg.cholesky(cov)
loc = tf.random.normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape # => [4, 5, 3]
mvn.event_shape # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape # => [4, 2, 3, 1]
mvn2.event_shape # => [2]
Args | |
---|---|
slices | slices from the [] operator |
Returns | |
---|---|
dist | A new tfd.Distribution instance with sliced parameters. |
__iter__
__iter__()