tfp.distributions.RelaxedBernoulli | TensorFlow Probability (original) (raw)
RelaxedBernoulli distribution with temperature and logits parameters.
Inherits From: AutoCompositeTensorDistribution, Distribution, AutoCompositeTensor
tfp.distributions.RelaxedBernoulli(
temperature,
logits=None,
probs=None,
validate_args=False,
allow_nan_stats=True,
name='RelaxedBernoulli'
)
The RelaxedBernoulli is a distribution over the unit interval (0,1), which continuously approximates a Bernoulli. The degree of approximation is controlled by a temperature: as the temperature goes to 0 the RelaxedBernoulli becomes discrete with a distribution described by thelogits
or probs
parameters, as the temperature goes to infinity the RelaxedBernoulli becomes the constant distribution that is identically 0.5.
The RelaxedBernoulli distribution is a reparameterized continuous distribution that is the binary special case of the RelaxedOneHotCategorical distribution (Maddison et al., 2016; Jang et al., 2016). For details on the binary special case see the appendix of Maddison et al. (2016) where it is referred to as BinConcrete. If you use this distribution, please cite both papers.
Some care needs to be taken for loss functions that depend on the log-probability of RelaxedBernoullis, because computing log-probabilities of the RelaxedBernoulli can suffer from underflow issues. In many case loss functions such as these are invariant under invertible transformations of the random variables. The KL divergence, found in the variational autoencoder loss, is an example. Because RelaxedBernoullis are sampled by a Logistic random variable followed by a tf.sigmoid op, one solution is to treat the Logistic as the random variable and tf.sigmoid as downstream. The KL divergences of two Logistics, which are always followed by a tf.sigmoidop, is equivalent to evaluating KL divergences of RelaxedBernoulli samples. See Maddison et al., 2016 for more details where this distribution is called the BinConcrete.
An alternative approach is to evaluate Bernoulli log probability or KL directly on relaxed samples, as done in Jang et al., 2016. In this case, guarantees on the loss are usually violated. For instance, using a Bernoulli KL in a relaxed ELBO is no longer a lower bound on the log marginal probability of the observation. Thus care and early stopping are important.
Examples
Creates three continuous distributions, which approximate 3 Bernoullis with probabilities (0.1, 0.5, 0.4). Samples from these distributions will be in the unit interval (0,1).
temperature = 0.5
p = [0.1, 0.5, 0.4]
dist = RelaxedBernoulli(temperature, probs=p)
Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1).
temperature = 0.5
logits = [-2, 2, 0]
dist = RelaxedBernoulli(temperature, logits=logits)
Creates three continuous distributions, whose sigmoid approximate 3 Bernoullis with logits (-2, 2, 0).
temperature = 0.5
logits = [-2, 2, 0]
dist = Logistic(logits/temperature, 1./temperature)
samples = dist.sample()
sigmoid_samples = tf.sigmoid(samples)
# sigmoid_samples has the same distribution as samples from
# RelaxedBernoulli(temperature, logits=logits)
Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very low, samples from these distributions are almost discrete, usually taking values very close to 0 or 1.
temperature = 1e-5
logits = [-2, 2, 0]
dist = RelaxedBernoulli(temperature, logits=logits)
Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very high, samples from these distributions are usually close to the (0.5, 0.5, 0.5) vector.
temperature = 100
logits = [-2, 2, 0]
dist = RelaxedBernoulli(temperature, logits=logits)
Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. 2016.
Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax. 2016.
Args | |
---|---|
temperature | A Tensor, representing the temperature of a set of RelaxedBernoulli distributions. The temperature values should be positive. |
logits | An N-D Tensor representing the log-odds of a positive event. Each entry in the Tensor parameterizes an independent RelaxedBernoulli distribution where the probability of an event is sigmoid(logits). Only one of logits or probs should be passed in. |
probs | An N-D Tensor representing the probability of a positive event. Each entry in the Tensor parameterizes an independent Bernoulli distribution. Only one of logits or probs should be passed in. |
validate_args | Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs. |
allow_nan_stats | Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined. |
name | Python str name prefixed to Ops created by this class. |
Raises | |
---|---|
ValueError | If both probs and logits are passed, or if neither. |
Attributes | |
---|---|
allow_nan_stats | Python bool describing behavior when a stat is undefined.Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. |
batch_shape | Shape of a single sample from a single event index as a TensorShape.May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. |
dtype | The DType of Tensors handled by this Distribution. |
event_shape | Shape of a single sample from a single batch as a TensorShape.May be partially defined or unknown. |
experimental_shard_axis_names | The list or structure of lists of active shard axis names. |
logits | Input argument logits. |
name | Name prepended to all ops created by this Distribution. |
name_scope | Returns a tf.name_scope instance for this class. |
non_trainable_variables | Sequence of non-trainable variables owned by this module and its submodules. |
parameters | Dictionary of parameters used to instantiate this Distribution. |
probs | Input argument probs. |
reparameterization_type | Describes how samples from the distribution are reparameterized.Currently this is one of the static instancestfd.FULLY_REPARAMETERIZED or tfd.NOT_REPARAMETERIZED. |
submodules | Sequence of all sub-modules.Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on). a = tf.Module() b = tf.Module() c = tf.Module() a.b = b b.c = c list(a.submodules) == [b, c] True list(b.submodules) == [c] True list(c.submodules) == [] True |
temperature | Distribution parameter for the location. |
trainable_variables | Sequence of trainable variables owned by this module and its submodules. |
validate_args | Python bool indicating possibly expensive checks are enabled. |
variables | Sequence of variables owned by this module and its submodules. |
Methods
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args | |
---|---|
name | name to give to the op |
Returns | |
---|---|
batch_shape | Tensor. |
cdf
cdf(
value, name='cdf', **kwargs
)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
cdf | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
copy
copy(
**override_parameters_kwargs
)
Creates a deep copy of the distribution.
Args | |
---|---|
**override_parameters_kwargs | String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
distribution | A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e.,dict(self.parameters, **override_parameters_kwargs). |
covariance
covariance(
name='covariance', **kwargs
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance
shall return a (batch of) matrices under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices,0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function mapping indices of this distribution's event dimensions to indices of a length-k'
vector.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
covariance | Floating-point Tensor with shape [B1, ..., Bn, k', k']where the first n dimensions are batch coordinates andk' = reduce_prod(self.event_shape). |
cross_entropy
cross_entropy(
other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution byQ
. Assuming P, Q
are absolutely continuous with respect to one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shannon) cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args | |
---|---|
other | tfp.distributions.Distribution instance. |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
cross_entropy | self.dtype Tensor with shape [B1, ..., Bn]representing n different calculations of (Shannon) cross entropy. |
entropy
entropy(
name='entropy', **kwargs
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
Args | |
---|---|
name | name to give to the op |
Returns | |
---|---|
event_shape | Tensor. |
experimental_default_event_space_bijector
experimental_default_event_space_bijector(
*args, **kwargs
)
Bijector mapping the reals (R**n) to the event space of the distribution.
Distributions with continuous support may implement_default_event_space_bijector
which returns a subclass oftfp.bijectors.Bijector that maps R**n to the distribution's event space. For example, the default bijector for the Beta
distribution is tfp.bijectors.Sigmoid(), which maps the real line to [0, 1]
, the support of the Beta
distribution. The default bijector for theCholeskyLKJ
distribution is tfp.bijectors.CorrelationCholesky, which maps R^(k * (k-1) // 2) to the submanifold of k x k lower triangular matrices with ones along the diagonal.
The purpose of experimental_default_event_space_bijector
is to enable gradient descent in an unconstrained space for Variational Inference and Hamiltonian Monte Carlo methods. Some effort has been made to choose bijectors such that the tails of the distribution in the unconstrained space are between Gaussian and Exponential.
For distributions with discrete event space, or for which TFP currently lacks a suitable bijector, this function returns None
.
Args | |
---|---|
*args | Passed to implementation _default_event_space_bijector. |
**kwargs | Passed to implementation _default_event_space_bijector. |
Returns | |
---|---|
event_space_bijector | Bijector instance or None. |
experimental_fit
@classmethod
experimental_fit( value, sample_ndims=1, validate_args=False, **init_kwargs )
Instantiates a distribution that maximizes the likelihood of x
.
Args | |
---|---|
value | a Tensor valid sample from this distribution family. |
sample_ndims | Positive int Tensor number of leftmost dimensions ofvalue that index i.i.d. samples. Default value: 1. |
validate_args | Python bool, default False. When True, distribution parameters are checked for validity despite possibly degrading runtime performance. When False, invalid inputs may silently render incorrect outputs. Default value: False. |
**init_kwargs | Additional keyword arguments passed through tocls.__init__. These take precedence in case of collision with the fitted parameters; for example,tfd.Normal.experimental_fit([1., 1.], scale=20.) returns a Normal distribution with scale=20. rather than the maximum likelihood parameter scale=0.. |
Returns | |
---|---|
maximum_likelihood_instance | instance of cls with parameters that maximize the likelihood of value. |
experimental_local_measure
experimental_local_measure(
value, backward_compat=False, **kwargs
)
Returns a log probability density together with a TangentSpace
.
A TangentSpace
allows us to calculate the correct push-forward density when we apply a transformation to a Distribution
on a strict submanifold of R^n (typically via a Bijector
in theTransformedDistribution
subclass). The density correction uses the basis of the tangent space.
Args | |
---|---|
value | float or double Tensor. |
backward_compat | bool specifying whether to fall back to returningFullSpace as the tangent space, and representing R^n with the standard basis. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
log_prob | a Tensor representing the log probability density, of shapesample_shape(x) + self.batch_shape with values of type self.dtype. |
tangent_space | a TangentSpace object (by default FullSpace) representing the tangent space to the manifold at value. |
Raises |
---|
UnspecifiedTangentSpaceError if backward_compat is False and the _experimental_tangent_space attribute has not been defined. |
experimental_sample_and_log_prob
experimental_sample_and_log_prob(
sample_shape=(), seed=None, name='sample_and_log_prob', **kwargs
)
Samples from this distribution and returns the log density of the sample.
The default implementation simply calls sample
and log_prob
:
def _sample_and_log_prob(self, sample_shape, seed, **kwargs):
x = self.sample(sample_shape=sample_shape, seed=seed, **kwargs)
return x, self.log_prob(x, **kwargs)
However, some subclasses may provide more efficient and/or numerically stable implementations.
Args | |
---|---|
sample_shape | integer Tensor desired shape of samples to draw. Default value: (). |
seed | PRNG seed; see tfp.random.sanitize_seed for details. Default value: None. |
name | name to give to the op. Default value: 'sample_and_log_prob'. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
samples | a Tensor, or structure of Tensors, with prepended dimensionssample_shape. |
log_prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
is_scalar_batch
is_scalar_batch(
name='is_scalar_batch'
)
Indicates that batch_shape == []
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
is_scalar_batch | bool scalar Tensor. |
is_scalar_event
is_scalar_event(
name='is_scalar_event'
)
Indicates that event_shape == []
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
is_scalar_event | bool scalar Tensor. |
kl_divergence
kl_divergence(
other, name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution byq
. Assuming p, q
are absolutely continuous with respect to reference measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shannon) cross entropy, and H[.]
denotes (Shannon) entropy.
Args | |
---|---|
other | tfp.distributions.Distribution instance. |
name | Python str prepended to names of ops created by this function. |
Returns | |
---|---|
kl_divergence | self.dtype Tensor with shape [B1, ..., Bn]representing n different calculations of the Kullback-Leibler divergence. |
log_cdf
log_cdf(
value, name='log_cdf', **kwargs
)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields a more accurate answer than simply taking the logarithm of the cdf
whenx << -1
.
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
logcdf | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
log_prob
log_prob(
value, name='log_prob', **kwargs
)
Log probability density/mass function.
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
log_prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
log_survival_function
log_survival_function(
value, name='log_survival_function', **kwargs
)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns |
---|
Tensor of shape sample_shape(x) + self.batch_shape with values of typeself.dtype. |
logits_parameter
logits_parameter(
name=None
)
Logits computed from non-None
input arg (probs
or logits
).
mean
mean(
name='mean', **kwargs
)
Mean.
mode
mode(
name='mode', **kwargs
)
Mode.
param_shapes
@classmethod
param_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
. (deprecated)
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
Args | |
---|---|
sample_shape | Tensor or python list/tuple. Desired shape of a call tosample(). |
name | name to prepend ops with. |
Returns |
---|
dict of parameter name to Tensor shapes. |
param_static_shapes
@classmethod
param_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape
) shapes. (deprecated)
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
. Assumes that the sample's shape is known statically.
Subclasses should override class method _param_shapes
to return constant-valued tensors when constant values are fed.
Args | |
---|---|
sample_shape | TensorShape or python list/tuple. Desired shape of a call to sample(). |
Returns |
---|
dict of parameter name to TensorShape. |
Raises | |
---|---|
ValueError | if sample_shape is a TensorShape and is not fully defined. |
parameter_properties
@classmethod
parameter_properties( dtype=tf.float32, num_classes=None )
Returns a dict mapping constructor arg names to property annotations.
This dict should include an entry for each of the distribution'sTensor
-valued constructor arguments.
Distribution subclasses are not required to implement_parameter_properties
, so this method may raise NotImplementedError
. Providing a _parameter_properties
implementation enables several advanced features, including:
- Distribution batch slicing (
sliced_distribution = distribution[i:j]
). - Automatic inference of
_batch_shape
and_batch_shape_tensor
, which must otherwise be computed explicitly. - Automatic instantiation of the distribution within TFP's internal property tests.
- Automatic construction of 'trainable' instances of the distribution using appropriate bijectors to avoid violating parameter constraints. This enables the distribution family to be used easily as a surrogate posterior in variational inference.
In the future, parameter property annotations may enable additional functionality; for example, returning Distribution instances fromtf.vectorized_map.
Args | |
---|---|
dtype | Optional float dtype to assume for continuous-valued parameters. Some constraining bijectors require advance knowledge of the dtype because certain constants (e.g., tfb.Softplus.low) must be instantiated with the same dtype as the values to be transformed. |
num_classes | Optional int Tensor number of classes to assume when inferring the shape of parameters for categorical-like distributions. Otherwise ignored. |
Returns | |
---|---|
parameter_properties | Astr ->tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names toParameterProperties` instances. |
Raises | |
---|---|
NotImplementedError | if the distribution class does not implement_parameter_properties. |
prob
prob(
value, name='prob', **kwargs
)
Probability density/mass function.
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
prob | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
probs_parameter
probs_parameter(
name=None
)
Probs computed from non-None
input arg (probs
or logits
).
quantile
quantile(
value, name='quantile', **kwargs
)
Quantile function. Aka 'inverse cdf' or 'percent point function'.
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
quantile | a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. |
sample
sample(
sample_shape=(), seed=None, name='sample', **kwargs
)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single sample.
Args | |
---|---|
sample_shape | 0D or 1D int32 Tensor. Shape of the generated samples. |
seed | PRNG seed; see tfp.random.sanitize_seed for details. |
name | name to give to the op. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
samples | a Tensor with prepended dimensions sample_shape. |
stddev
stddev(
name='stddev', **kwargs
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
stddev | Floating-point Tensor with shape identical tobatch_shape + event_shape, i.e., the same shape as self.mean(). |
survival_function
survival_function(
value, name='survival_function', **kwargs
)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns |
---|
Tensor of shape sample_shape(x) + self.batch_shape with values of typeself.dtype. |
unnormalized_log_prob
unnormalized_log_prob(
value, name='unnormalized_log_prob', **kwargs
)
Potentially unnormalized log probability density/mass function.
This function is similar to log_prob
, but does not require that the return value be normalized. (Normalization here refers to the total integral of probability being one, as it should be by definition for any probability distribution.) This is useful, for example, for distributions where the normalization constant is difficult or expensive to compute. By default, this simply calls log_prob
.
Args | |
---|---|
value | float or double Tensor. |
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
unnormalized_log_prob | a Tensor of shapesample_shape(x) + self.batch_shape with values of type self.dtype. |
variance
variance(
name='variance', **kwargs
)
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
Args | |
---|---|
name | Python str prepended to names of ops created by this function. |
**kwargs | Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
variance | Floating-point Tensor with shape identical tobatch_shape + event_shape, i.e., the same shape as self.mean(). |
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method | The method to wrap. |
Returns |
---|
The original method wrapped such that it enters the module's name scope. |
__getitem__
__getitem__(
slices
)
Slices the batch axes of this distribution, returning a new instance.
b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape # => [3, 1, 5, 2, 4]
x = tf.random.normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.linalg.cholesky(cov)
loc = tf.random.normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape # => [4, 5, 3]
mvn.event_shape # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape # => [4, 2, 3, 1]
mvn2.event_shape # => [2]
Args | |
---|---|
slices | slices from the [] operator |
Returns | |
---|---|
dist | A new tfd.Distribution instance with sliced parameters. |
__iter__
__iter__()