Module: tfp.glm | TensorFlow Probability (original) (raw)
TensorFlow Probability GLM python package.
Classes
class Bernoulli: Bernoulli(probs=mean)
where mean = sigmoid(X @ weights)
.
class BernoulliNormalCDF: Bernoulli(probs=mean)
where mean = Normal(0, 1).cdf(X @ weights)
.
class Binomial: Binomial(total_count, probs=mean)
.
class CustomExponentialFamily: Constucts GLM from arbitrary distribution and inverse link function.
class ExponentialFamily: Specifies a mean-value parameterized exponential family.
class GammaExp: Gamma(concentration=1, rate=1 / mean)
where mean = exp(X @ w))
.
class GammaSoftplus: Gamma(concentration=1, rate=1 / mean)
where mean = softplus(X @ w))
.
class LogNormal: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2)))
where mean = exp(X @ weights)
.
class LogNormalSoftplus: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2)))
mean = softplus(X @ weights)
.
class NegativeBinomial: NegativeBinomial(total_count, probs=mean / (mean + total_count))
.
class NegativeBinomialSoftplus: NegativeBinomial(total_count, probs=mean / (mean + total_count))
.
class Normal: Normal(loc=mean, scale=1)
where mean = X @ weights
.
class NormalReciprocal: Normal(loc=mean, scale=1)
where mean = 1 / (X @ weights)
.
class Poisson: Poisson(rate=mean)
where mean = exp(X @ weights)
.
class PoissonSoftplus: Poisson(rate=mean)
where mean = softplus(X @ weights)
.
Functions
compute_predicted_linear_response(...): Computes model_matrix @ model_coefficients + offset
.
convergence_criteria_small_relative_norm_weights_change(...): Returns Python callable
which indicates fitting procedure has converged.
fit(...): Runs multiple Fisher scoring steps.
fit_one_step(...): Runs one step of Fisher scoring.
fit_sparse(...): Fits a GLM using coordinate-wise FIM-informed proximal gradient descent.
fit_sparse_one_step(...): One step of (the outer loop of) the GLM fitting algorithm.