Module: tft.experimental | TFX | TensorFlow (original) (raw)
Module: tft.experimental
Stay organized with collections Save and categorize content based on your preferences.
Module level imports for tensorflow_transform.experimental.
Classes
class CacheablePTransformAnalyzer: A PTransformAnalyzer which enables analyzer cache.
class PTransformAnalyzerCacheCoder: A coder iterface for encoding and decoding cache items.
class SimpleJsonPTransformAnalyzerCacheCoder: An accumulator cache coder that can handle lists.
Functions
annotate_sparse_output_shape(...): Annotates a sparse output to have a given dense_shape.
annotate_true_sparse_output(...): Annotates a sparse output to be truely sparse and not varlen.
approximate_vocabulary(...): Computes the unique values of a Tensor
over the whole dataset.
compute_and_apply_approximate_vocabulary(...): Generates an approximate vocabulary for x
and maps it to an integer.
document_frequency(...): Maps the terms in x to their document frequency in the same order.
get_vocabulary_size_by_name(...): Gets the size of a vocabulary created using tft.vocabulary.
idf(...): Maps the terms in x to their inverse document frequency in the same order.
ptransform_analyzer(...): Applies a user-provided PTransform over the whole dataset.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-11-01 UTC.